中文版 | English
题名

Real-Time Multi-Class Disturbance Detection for Φ-OTDR Based on YOLO Algorithm

作者
通讯作者Shao,Liyang
发表日期
2022-03-01
DOI
发表期刊
ISSN
1424-8220
EISSN
1424-8220
卷号22期号:5
摘要
This paper proposes a real-time multi-class disturbance detection algorithm based on YOLO for distributed fiber vibration sensing. The algorithm achieves real-time detection of event location and classification on external intrusions sensed by distributed optical fiber sensing system (DOFS) based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). We conducted data collection under perimeter security scenarios and acquired five types of events with a total of 5787 samples. The data is used as a spatial–temporal sensing image in the training of our proposed YOLO-based model (You Only Look Once-based method). Our scheme uses the Darknet53 network to simplify the traditional two-step object detection into a one-step process, using one network structure for both event localization and classification, thus improving the detection speed to achieve real-time operation. Compared with the traditional Fast-RCNN (Fast Region-CNN) and Faster-RCNN (Faster Region-CNN) algorithms, our scheme can achieve 22.83 frames per second (FPS) while maintaining high accuracy (96.14%), which is 44.90 times faster than Fast-RCNN and 3.79 times faster than Faster-RCNN. It achieves real-time operation for locating and classifying intrusion events with continuously recorded sensing data. Experimental results have demonstrated that this scheme provides a solution to real-time, multi-class external intrusion events detection and classification for the Φ-OTDR-based DOFS in practical applications.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Future Greater-Bay Area Network Facilities for Large-scale Experiments and Applications[LZC0019] ; Guangdong Department of Science and Technology[2021A0505080002] ; Shenzhen Science, Technology & Innovation Commission[20200925162216001] ; Guangdong Department of Education[2021ZDZX1023] ; Verification Platform of Multi-tier Coverage Communication Network for Oceans[LZC0020]
WOS研究方向
Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:000819938500001
出版者
EI入藏号
20221111782882
EI主题词
Intrusion detection ; Optical fibers ; Real time systems ; Signal detection
EI分类号
Information Theory and Signal Processing:716.1 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Fiber Optics:741.1.2
ESI学科分类
CHEMISTRY
Scopus记录号
2-s2.0-85126064807
来源库
Scopus
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327699
专题工学院_电子与电气工程系
工学院
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Electrical and Computer Engineering,Faculty of Science and Technology,University of Macau,999078,Macao
3.Department of Microelectronics,Shenzhen Institute of Information Technology,Shenzhen,518172,China
4.The Department of Electronic and Information Engineering,Hong Kong Polytechnic University,Kowloon,Hong Kong
5.Peng Cheng Laboratory,Shenzhen,518005,China
6.College of Engineering and Applied Sciences,Nanjing University,Nanjing,210023,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Xu,Weijie,Yu,Feihong,Liu,Shuaiqi,et al. Real-Time Multi-Class Disturbance Detection for Φ-OTDR Based on YOLO Algorithm[J]. SENSORS,2022,22(5).
APA
Xu,Weijie.,Yu,Feihong.,Liu,Shuaiqi.,Xiao,Dongrui.,Hu,Jie.,...&Shao,Liyang.(2022).Real-Time Multi-Class Disturbance Detection for Φ-OTDR Based on YOLO Algorithm.SENSORS,22(5).
MLA
Xu,Weijie,et al."Real-Time Multi-Class Disturbance Detection for Φ-OTDR Based on YOLO Algorithm".SENSORS 22.5(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Weijie]的文章
[Yu,Feihong]的文章
[Liu,Shuaiqi]的文章
百度学术
百度学术中相似的文章
[Xu,Weijie]的文章
[Yu,Feihong]的文章
[Liu,Shuaiqi]的文章
必应学术
必应学术中相似的文章
[Xu,Weijie]的文章
[Yu,Feihong]的文章
[Liu,Shuaiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。