中文版 | English
题名

Attention-enhanced neural network models for turbulence simulation

作者
通讯作者Wang,Jianchun
发表日期
2022-02-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号34期号:2
摘要
Deep neural network models have shown great potential in accelerating the simulation of fluid dynamic systems. Once trained, these models can make inferences within seconds, thus can be extremely efficient. However, it becomes more difficult for neural networks to make accurate predictions when the flow becomes more chaotic and turbulent at higher Reynolds numbers. One of the most important reasons is that existing models lack the mechanism to handle the unique characteristic of high-Reynolds-number turbulent flow; multi-scale flow structures are nonuniformly distributed and strongly nonequilibrium. In this work, we address this issue with the concept of visual attention: intuitively, we expect the attention module to capture the nonequilibrium of turbulence by automatically adjusting weights on different regions. We compare the model performance against a state-of-the-art neural network model as the baseline, the Fourier neural operator, on a two-dimensional turbulence prediction task. Numerical experiments show that the attention-enhanced neural network model outperforms existing state-of-the-art baselines, and can accurately reconstruct a variety of statistics and instantaneous spatial structures of turbulence at high Reynolds numbers. Furthermore, the attention mechanism provides 40% error reduction with 1% increase in parameters, at the same level of computational cost.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[12172161];National Natural Science Foundation of China[91752201];National Natural Science Foundation of China[91952104];National Natural Science Foundation of China[92052301];
WOS记录号
WOS:000753470400012
EI入藏号
20220811680908
EI主题词
Behavioral research ; Deep neural networks ; Reynolds number
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Fluid Flow, General:631.1 ; Social Sciences:971
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85124707240
来源库
Scopus
引用统计
被引频次[WOS]:33
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327755
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou,511458,China
3.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China
4.Department of Computer Engineering,Polytechnique Montreal,Montreal,H3T1J4,Canada
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Peng,Wenhui,Yuan,Zelong,Wang,Jianchun. Attention-enhanced neural network models for turbulence simulation[J]. PHYSICS OF FLUIDS,2022,34(2).
APA
Peng,Wenhui,Yuan,Zelong,&Wang,Jianchun.(2022).Attention-enhanced neural network models for turbulence simulation.PHYSICS OF FLUIDS,34(2).
MLA
Peng,Wenhui,et al."Attention-enhanced neural network models for turbulence simulation".PHYSICS OF FLUIDS 34.2(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng,Wenhui]的文章
[Yuan,Zelong]的文章
[Wang,Jianchun]的文章
百度学术
百度学术中相似的文章
[Peng,Wenhui]的文章
[Yuan,Zelong]的文章
[Wang,Jianchun]的文章
必应学术
必应学术中相似的文章
[Peng,Wenhui]的文章
[Yuan,Zelong]的文章
[Wang,Jianchun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。