题名 | Attention-enhanced neural network models for turbulence simulation |
作者 | |
通讯作者 | Wang,Jianchun |
发表日期 | 2022-02-01
|
DOI | |
发表期刊 | |
ISSN | 1070-6631
|
EISSN | 1089-7666
|
卷号 | 34期号:2 |
摘要 | Deep neural network models have shown great potential in accelerating the simulation of fluid dynamic systems. Once trained, these models can make inferences within seconds, thus can be extremely efficient. However, it becomes more difficult for neural networks to make accurate predictions when the flow becomes more chaotic and turbulent at higher Reynolds numbers. One of the most important reasons is that existing models lack the mechanism to handle the unique characteristic of high-Reynolds-number turbulent flow; multi-scale flow structures are nonuniformly distributed and strongly nonequilibrium. In this work, we address this issue with the concept of visual attention: intuitively, we expect the attention module to capture the nonequilibrium of turbulence by automatically adjusting weights on different regions. We compare the model performance against a state-of-the-art neural network model as the baseline, the Fourier neural operator, on a two-dimensional turbulence prediction task. Numerical experiments show that the attention-enhanced neural network model outperforms existing state-of-the-art baselines, and can accurately reconstruct a variety of statistics and instantaneous spatial structures of turbulence at high Reynolds numbers. Furthermore, the attention mechanism provides 40% error reduction with 1% increase in parameters, at the same level of computational cost. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[12172161];National Natural Science Foundation of China[91752201];National Natural Science Foundation of China[91952104];National Natural Science Foundation of China[92052301];
|
WOS记录号 | WOS:000753470400012
|
EI入藏号 | 20220811680908
|
EI主题词 | Behavioral research
; Deep neural networks
; Reynolds number
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Fluid Flow, General:631.1
; Social Sciences:971
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85124707240
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:33
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/327755 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou,511458,China 3.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China 4.Department of Computer Engineering,Polytechnique Montreal,Montreal,H3T1J4,Canada |
第一作者单位 | 力学与航空航天工程系; 南方科技大学 |
通讯作者单位 | 力学与航空航天工程系; 南方科技大学 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Peng,Wenhui,Yuan,Zelong,Wang,Jianchun. Attention-enhanced neural network models for turbulence simulation[J]. PHYSICS OF FLUIDS,2022,34(2).
|
APA |
Peng,Wenhui,Yuan,Zelong,&Wang,Jianchun.(2022).Attention-enhanced neural network models for turbulence simulation.PHYSICS OF FLUIDS,34(2).
|
MLA |
Peng,Wenhui,et al."Attention-enhanced neural network models for turbulence simulation".PHYSICS OF FLUIDS 34.2(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论