中文版 | English
题名

Machine learning bridges microslips and slip avalanches of sheared granular gouges

作者
通讯作者Mei,Jiangzhou
发表日期
2022-02-01
DOI
发表期刊
ISSN
0012-821X
EISSN
1385-013X
卷号579
摘要
Understanding the origin of stress drop of fault gouges may offer deeper insights into many geophysical processes such as earthquakes. Microslips of sheared granular gouges were found to be precursors of large slip events, but the documented relation between microslips and macroscopic stress drops remains largely qualitative. This study aims to quantitatively connect microslips to macroscopic stress fluctuations, including both stress recharges and stress drops. We examine the stick-slip behavior of a slowly sheared granular system using discrete element method simulations. The microslips are found to demonstrate significantly different statistical and spatial characteristics between the stick and slip stages. We further investigate the correlation between the macroscopic stress fluctuations and the features extracted from microslips based on a machine learning (ML) approach. The data-driven model that incorporates the information of the spatial distribution of microslips can robustly predict the magnitude of stress fluctuation. A further feature importance analysis confirms that the spatial patterns of microslips manifest key information governing the macroscopic stress fluctuations. The generalization of ML across granular gouges with different characteristics indicates the proposed model can be applicable to a broad range of granular materials. Our findings in this study may shed lights on the mechanisms governing earthquake nucleation, microslips, friction fluctuations, and their connection during the stick-slip dynamics of earthquake cycles.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
其他
资助项目
National Natural Science Foundation of China[51779194];National Natural Science Foundation of China[51825905];National Natural Science Foundation of China[U1865204];
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000781933800011
出版者
EI入藏号
20220311459677
EI主题词
Drops ; Earthquakes ; Faulting ; Granular materials ; Machine learning ; Stick-slip
EI分类号
Concrete:412 ; Seismology:484 ; Earthquake Measurements and Analysis:484.1 ; Mechanics:931.1 ; Materials Science:951
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85122643334
来源库
Scopus
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327772
专题理学院_地球与空间科学系
作者单位
1.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan,430072,China
2.Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education,Wuhan University,Wuhan,430072,China
3.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
4.Department of Civil and Environmental Engineering,The Hong Kong University of Science and Technology,Kowloon,Clear Water Bay,Hong Kong
5.State Key Laboratory of Geomechanics and Geotechnical Engineering,Chinese Academy of Sciences,Wuhan,430071,China
推荐引用方式
GB/T 7714
Ma,Gang,Mei,Jiangzhou,Gao,Ke,et al. Machine learning bridges microslips and slip avalanches of sheared granular gouges[J]. EARTH AND PLANETARY SCIENCE LETTERS,2022,579.
APA
Ma,Gang,Mei,Jiangzhou,Gao,Ke,Zhao,Jidong,Zhou,Wei,&Wang,Di.(2022).Machine learning bridges microslips and slip avalanches of sheared granular gouges.EARTH AND PLANETARY SCIENCE LETTERS,579.
MLA
Ma,Gang,et al."Machine learning bridges microslips and slip avalanches of sheared granular gouges".EARTH AND PLANETARY SCIENCE LETTERS 579(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma,Gang]的文章
[Mei,Jiangzhou]的文章
[Gao,Ke]的文章
百度学术
百度学术中相似的文章
[Ma,Gang]的文章
[Mei,Jiangzhou]的文章
[Gao,Ke]的文章
必应学术
必应学术中相似的文章
[Ma,Gang]的文章
[Mei,Jiangzhou]的文章
[Gao,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。