题名 | Subgroup analysis for functional partial linear regression model |
作者 | |
通讯作者 | Yang,Jin |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0319-5724
|
EISSN | 1708-945X
|
卷号 | 51期号:2 |
摘要 | In a functional partial linear regression (FPLR) model, where the response variable is scalar while the explanatory variables involve both infinite-dimensional functional predictors and finite-dimensional scalar covariates, the relationships between the response and the explanatory variables are often assumed to be the same for all subjects. This article relaxes this assumption and considers a subgroup analysis for the FPLR model, which allows the intercepts to vary for different subgroups from a heterogeneous population. By projecting the functional predictors onto the corresponding eigenspace, the subgroup analysis based on the FPLR model can be simplified to a framework that is similar to the classical subgroup analysis problem. To automatically identify subgroups among observations and estimate the regression parameters of interest, we combine the functional principal component analysis with the concave pairwise penalized approach and develop an ADMM algorithm for functional subgroup analysis. We also establish the consistency of the proposed estimators under mild conditions. Simulation experiments demonstrate that the concave penalized subgroup approach could potentially achieve substantial gains over the ordinary FPLR model. The analysis of data from a creative achievement study is used to illustrate the practical performance of the subgroup analysis for the FPLR model. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[11701235,11961028,12161042,11901315]
; Science and Technology Research Project of Education Department of Jiangxi Province["GJJ200522","GJJ200545"]
; China Postdoctoral Science Foundation["2021M691443","2021TQ0141"]
|
WOS研究方向 | Mathematics
|
WOS类目 | Statistics & Probability
|
WOS记录号 | WOS:000769983600001
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85126358469
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/327827 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.School of Statistics,Jiangxi University of Finance and Economics,Nanchang,Jiangxi,330013,China 2.Department of Statistics and Data Science,The Southern University of Science and Technology,Shenzhen,Guangdong,518055,China 3.Department of Applied Mathematics,The Hong Kong Polytechnic University,Kowloon,Hong Kong 4.Biostatistics and Bioinformatics Branch,Eunice Kennedy Shriver National Institute of Child Health and Human Development,National Institutes of Health,Bethesda,20817,United States |
推荐引用方式 GB/T 7714 |
Ma,Haiqiang,Liu,Chao,Xu,Sheng,et al. Subgroup analysis for functional partial linear regression model[J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,2022,51(2).
|
APA |
Ma,Haiqiang,Liu,Chao,Xu,Sheng,&Yang,Jin.(2022).Subgroup analysis for functional partial linear regression model.CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,51(2).
|
MLA |
Ma,Haiqiang,et al."Subgroup analysis for functional partial linear regression model".CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE 51.2(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论