中文版 | English
题名

Subgroup analysis for functional partial linear regression model

作者
通讯作者Yang,Jin
发表日期
2022
DOI
发表期刊
ISSN
0319-5724
EISSN
1708-945X
卷号51期号:2
摘要
In a functional partial linear regression (FPLR) model, where the response variable is scalar while the explanatory variables involve both infinite-dimensional functional predictors and finite-dimensional scalar covariates, the relationships between the response and the explanatory variables are often assumed to be the same for all subjects. This article relaxes this assumption and considers a subgroup analysis for the FPLR model, which allows the intercepts to vary for different subgroups from a heterogeneous population. By projecting the functional predictors onto the corresponding eigenspace, the subgroup analysis based on the FPLR model can be simplified to a framework that is similar to the classical subgroup analysis problem. To automatically identify subgroups among observations and estimate the regression parameters of interest, we combine the functional principal component analysis with the concave pairwise penalized approach and develop an ADMM algorithm for functional subgroup analysis. We also establish the consistency of the proposed estimators under mild conditions. Simulation experiments demonstrate that the concave penalized subgroup approach could potentially achieve substantial gains over the ordinary FPLR model. The analysis of data from a creative achievement study is used to illustrate the practical performance of the subgroup analysis for the FPLR model.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[11701235,11961028,12161042,11901315] ; Science and Technology Research Project of Education Department of Jiangxi Province["GJJ200522","GJJ200545"] ; China Postdoctoral Science Foundation["2021M691443","2021TQ0141"]
WOS研究方向
Mathematics
WOS类目
Statistics & Probability
WOS记录号
WOS:000769983600001
出版者
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85126358469
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327827
专题理学院_统计与数据科学系
作者单位
1.School of Statistics,Jiangxi University of Finance and Economics,Nanchang,Jiangxi,330013,China
2.Department of Statistics and Data Science,The Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
3.Department of Applied Mathematics,The Hong Kong Polytechnic University,Kowloon,Hong Kong
4.Biostatistics and Bioinformatics Branch,Eunice Kennedy Shriver National Institute of Child Health and Human Development,National Institutes of Health,Bethesda,20817,United States
推荐引用方式
GB/T 7714
Ma,Haiqiang,Liu,Chao,Xu,Sheng,et al. Subgroup analysis for functional partial linear regression model[J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,2022,51(2).
APA
Ma,Haiqiang,Liu,Chao,Xu,Sheng,&Yang,Jin.(2022).Subgroup analysis for functional partial linear regression model.CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,51(2).
MLA
Ma,Haiqiang,et al."Subgroup analysis for functional partial linear regression model".CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE 51.2(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma,Haiqiang]的文章
[Liu,Chao]的文章
[Xu,Sheng]的文章
百度学术
百度学术中相似的文章
[Ma,Haiqiang]的文章
[Liu,Chao]的文章
[Xu,Sheng]的文章
必应学术
必应学术中相似的文章
[Ma,Haiqiang]的文章
[Liu,Chao]的文章
[Xu,Sheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。