中文版 | English
题名

Deep Learning Based Detection With Radar Interference

作者
发表日期
2022
DOI
发表期刊
ISSN
0018-9545
EISSN
1939-9359
卷号71期号:6页码:6245-6254
摘要
Due to the increasing demand for spectrum resources, the co-existence of communications and radar systems has been proposed that allows radar and communications systems to operate in the same frequency band. On the other hand, deep learning has shown great potential in revolutionizing communications systems. In this work, we investigate the use of deep learning in communications systems subject to interference from radar systems. Specifically, we consider a single-carrier communications system. Linear frequency-modulated (LFM) and frequency-modulated continuous-wave (FMCW) are considered for radar. Several important system parameters, including the level of noise and interference, the radar interference coverage, the symbol duration, feature extraction methods and the number of hidden layers are investigated for the performance of the detector. Fully connected deep neural network (FCDNN) and long short-term memory (LSTM) detectors are implemented, where principle component analysis (PCA) is applied to preprocess the observed signals for the FCDNN detector. Numerical results show that the learning-based detector achieves comparable performance in the radar-communication system to the traditional detector but without interference cancellation. Preprocessing the received signals with PCA can improve the performance of FCDNN when interference is strong. Also, LSTM shows more robust performance than FCDNN when the channel has time-related distortion.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
EC H2020 DAWN4IoE-Data Aware Wireless Network for Internet-of-Everything[778305] ; National Natural Science Foundation of China[61873119,92067109] ; Science and Technology Innovation Commission of Shenzhen[JCYJ20200109141218676] ; Guangdong Provincial Science and Technology Commission[2021A0505030001]
WOS研究方向
Engineering ; Telecommunications ; Transportation
WOS类目
Engineering, Electrical & Electronic ; Telecommunications ; Transportation Science & Technology
WOS记录号
WOS:000815676900048
出版者
EI入藏号
20221111799709
EI主题词
Deep neural networks ; Feature extraction ; Frequency modulation ; Long short-term memory ; Principal component analysis ; Radar interference ; Radar signal processing ; Tracking radar
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Radar Systems and Equipment:716.2 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85126307950
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9733260
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327832
专题南方科技大学
作者单位
1.School of Engineering, University of Warwick, 2707 Coventry, West Midlands, United Kingdom of Great Britain and Northern Ireland, CV4 7AL
2.School of Engineering, University of Warwick, Coventry, West Midlands, United Kingdom of Great Britain and Northern Ireland, CV4 7AL
3.Computer Science and Engineering, Southern University of Science and Technology, 255310 Shenzhen, Guangdong, China
推荐引用方式
GB/T 7714
Liu,Chenguang,Chen,Yunfei,Yang,Shuang Hua. Deep Learning Based Detection With Radar Interference[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2022,71(6):6245-6254.
APA
Liu,Chenguang,Chen,Yunfei,&Yang,Shuang Hua.(2022).Deep Learning Based Detection With Radar Interference.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,71(6),6245-6254.
MLA
Liu,Chenguang,et al."Deep Learning Based Detection With Radar Interference".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 71.6(2022):6245-6254.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Chenguang]的文章
[Chen,Yunfei]的文章
[Yang,Shuang Hua]的文章
百度学术
百度学术中相似的文章
[Liu,Chenguang]的文章
[Chen,Yunfei]的文章
[Yang,Shuang Hua]的文章
必应学术
必应学术中相似的文章
[Liu,Chenguang]的文章
[Chen,Yunfei]的文章
[Yang,Shuang Hua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。