中文版 | English
题名

DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity

作者
发表日期
2022
DOI
发表期刊
ISSN
0278-0062
EISSN
1558-254X
卷号PP期号:99页码:1-1
摘要

Accurate estimation and quantification of the corneal nerve fiber tortuosity in corneal confocal microscopy (CCM) is of great importance for disease understanding and clinical decision-making. However, the grading of corneal nerve tortuosity remains a great challenge due to the lack of agreements on the definition and quantification of tortuosity. In this paper, we propose a fully automated deep learning method that performs image-level tortuosity grading of corneal nerves, which is based on CCM images and segmented corneal nerves to further improve the grading accuracy with interpretability principles. The proposed method consists of two stages: 1) A pre-trained feature extraction backbone over ImageNet is fine-tuned with a proposed novel bilinear attention (BA) module for the prediction of the regions of interest (ROIs) and coarse grading of the image. The BA module enhances the ability of the network to model long-range dependencies and global contexts of nerve fibers by capturing second-order statistics of high-level features. 2) An auxiliary tortuosity grading network (AuxNet) is proposed to obtain an auxiliary grading over the identified ROIs, enabling the coarse and additional gradings to be finally fused together for more accurate final results. The experimental results show that our method surpasses existing methods in tortuosity grading, and achieves an overall accuracy of 85.64% in four-level classification. We also validate it over a clinical dataset, and the statistical analysis demonstrates a significant difference of tortuosity levels between healthy control and diabetes group. We have released a dataset with 1500 CCM images and their manual annotations of four tortuosity levels for public access. The code is available at: https://github.com/iMED-Lab/TortuosityGrading.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Zhejiang Provincial Natural Science Foundation of China["LR22F020008","LZ19F010001"] ; Youth Innovation Promotion Association CAS[2021298] ; National Science Foundation Program of China["61906181","62103398"] ; Ningbo 2025 ST Megaprojects["2019B10033","2019B10061"]
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000837269000015
出版者
EI入藏号
20221011758483
EI主题词
Decision making ; Deep learning ; Grading ; Image enhancement
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Optical Devices and Systems:741.3 ; Laser Applications:744.9 ; Management:912.2
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9729201
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327855
专题工学院_计算机科学与工程系
作者单位
1.Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China and University of Chinese Academy of Sciences, Beijing, China.
2.Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
3.Department of Computer Science, Edge Hill University, Ormskirk, UK.
4.Department of Eye and Vision Science, University of Liverpool, Liverpool, UK.
5.School of Control and Computer Engineering, North China Electric Power University, Baoding, China.
6.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
7.Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China and Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.
推荐引用方式
GB/T 7714
Mou,Lei,Qi,Hong,Liu,Yonghuai,et al. DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2022,PP(99):1-1.
APA
Mou,Lei.,Qi,Hong.,Liu,Yonghuai.,Zheng,Yalin.,Matthew,Peter.,...&Zhao,Yitian.(2022).DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity.IEEE TRANSACTIONS ON MEDICAL IMAGING,PP(99),1-1.
MLA
Mou,Lei,et al."DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity".IEEE TRANSACTIONS ON MEDICAL IMAGING PP.99(2022):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
DeepGrading_Deep_Lea(6964KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mou,Lei]的文章
[Qi,Hong]的文章
[Liu,Yonghuai]的文章
百度学术
百度学术中相似的文章
[Mou,Lei]的文章
[Qi,Hong]的文章
[Liu,Yonghuai]的文章
必应学术
必应学术中相似的文章
[Mou,Lei]的文章
[Qi,Hong]的文章
[Liu,Yonghuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。