题名 | Machine learning assisted discovering of new M2X3-type thermoelectric materials |
作者 | |
通讯作者 | Liu,Wei Shu |
共同第一作者 | Chen,Du; Jiang,Feng; Fang,Liang |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1001-0521
|
EISSN | 1867-7185
|
卷号 | 41期号:5页码:1543-1553 |
摘要 | Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. However, both the experiment and first-principles calculation deriving routes to determine a new compound are time and resources consuming. Here, we demonstrated a machine learning approach to discover new MX-type thermoelectric materials with only the composition information. According to the classic BiTe material, we constructed an MX-type thermoelectric material library with 720 compounds by using isoelectronic substitution, in which only 101 compounds have crystalline structure information in the Inorganic Crystal Structure Database (ICSD) and Materials Project (MP) database. A model based on the random forest (RF) algorithm plus Bayesian optimization was used to explore the underlying principles to determine the crystal structures from the known compounds. The physical properties of constituent elements (such as atomic mass, electronegativity, ionic radius) were used to define the feature of the compounds with a general formula MMXXX (M + M: X + X + X = 2:3). The primary goal is to find new thermoelectric materials with the same rhombohedral structure as BiTe by machine learning. The final trained RF model showed a high accuracy of 91% on the prediction of rhombohedral compounds. Finally, we selected four important features to proceed with the polynomial fitting with the prediction results from the RF model and used the acquired polynomial function to make further discoveries outside the pre-defined material library. Graphical abstract: [Figure not available: see fulltext.] |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 共同第一
; 通讯
|
WOS记录号 | WOS:000759303500001
|
EI入藏号 | 20220811699881
|
EI主题词 | Bismuth compounds
; Calculations
; Chemical bonds
; Crystal structure
; Decision trees
; Electronegativity
; Machine learning
; Tellurium compounds
; Thermoelectricity
|
EI分类号 | Thermoelectric Energy:615.4
; Electricity: Basic Concepts and Phenomena:701.1
; Physical Chemistry:801.4
; Electrochemistry:801.4.1
; Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Crystal Lattice:933.1.1
; Systems Science:961
|
ESI学科分类 | MATERIALS SCIENCE
|
Scopus记录号 | 2-s2.0-85125080444
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:18
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/327891 |
专题 | 工学院_材料科学与工程系 理学院_物理系 |
作者单位 | 1.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Mechanical Engineering,The University of Hong Kong,999077,Hong Kong 3.Department of Physics & Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China 4.Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education),Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系; 南方科技大学 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen,Du,Jiang,Feng,Fang,Liang,et al. Machine learning assisted discovering of new M2X3-type thermoelectric materials[J]. RARE METALS,2022,41(5):1543-1553.
|
APA |
Chen,Du,Jiang,Feng,Fang,Liang,Zhu,Yong Bin,Ye,Cai Chao,&Liu,Wei Shu.(2022).Machine learning assisted discovering of new M2X3-type thermoelectric materials.RARE METALS,41(5),1543-1553.
|
MLA |
Chen,Du,et al."Machine learning assisted discovering of new M2X3-type thermoelectric materials".RARE METALS 41.5(2022):1543-1553.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
41. Rare Met._s12598(1739KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论