中文版 | English
题名

Machine learning assisted discovering of new M2X3-type thermoelectric materials

作者
通讯作者Liu,Wei Shu
共同第一作者Chen,Du; Jiang,Feng; Fang,Liang
发表日期
2022
DOI
发表期刊
ISSN
1001-0521
EISSN
1867-7185
卷号41期号:5页码:1543-1553
摘要

Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. However, both the experiment and first-principles calculation deriving routes to determine a new compound are time and resources consuming. Here, we demonstrated a machine learning approach to discover new MX-type thermoelectric materials with only the composition information. According to the classic BiTe material, we constructed an MX-type thermoelectric material library with 720 compounds by using isoelectronic substitution, in which only 101 compounds have crystalline structure information in the Inorganic Crystal Structure Database (ICSD) and Materials Project (MP) database. A model based on the random forest (RF) algorithm plus Bayesian optimization was used to explore the underlying principles to determine the crystal structures from the known compounds. The physical properties of constituent elements (such as atomic mass, electronegativity, ionic radius) were used to define the feature of the compounds with a general formula MMXXX (M + M: X + X + X = 2:3). The primary goal is to find new thermoelectric materials with the same rhombohedral structure as BiTe by machine learning. The final trained RF model showed a high accuracy of 91% on the prediction of rhombohedral compounds. Finally, we selected four important features to proceed with the polynomial fitting with the prediction results from the RF model and used the acquired polynomial function to make further discoveries outside the pre-defined material library. Graphical abstract: [Figure not available: see fulltext.]

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 共同第一 ; 通讯
WOS记录号
WOS:000759303500001
EI入藏号
20220811699881
EI主题词
Bismuth compounds ; Calculations ; Chemical bonds ; Crystal structure ; Decision trees ; Electronegativity ; Machine learning ; Tellurium compounds ; Thermoelectricity
EI分类号
Thermoelectric Energy:615.4 ; Electricity: Basic Concepts and Phenomena:701.1 ; Physical Chemistry:801.4 ; Electrochemistry:801.4.1 ; Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Crystal Lattice:933.1.1 ; Systems Science:961
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85125080444
来源库
Scopus
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327891
专题工学院_材料科学与工程系
理学院_物理系
作者单位
1.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Mechanical Engineering,The University of Hong Kong,999077,Hong Kong
3.Department of Physics & Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
4.Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education),Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系;  南方科技大学
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Chen,Du,Jiang,Feng,Fang,Liang,et al. Machine learning assisted discovering of new M2X3-type thermoelectric materials[J]. RARE METALS,2022,41(5):1543-1553.
APA
Chen,Du,Jiang,Feng,Fang,Liang,Zhu,Yong Bin,Ye,Cai Chao,&Liu,Wei Shu.(2022).Machine learning assisted discovering of new M2X3-type thermoelectric materials.RARE METALS,41(5),1543-1553.
MLA
Chen,Du,et al."Machine learning assisted discovering of new M2X3-type thermoelectric materials".RARE METALS 41.5(2022):1543-1553.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
41. Rare Met._s12598(1739KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Du]的文章
[Jiang,Feng]的文章
[Fang,Liang]的文章
百度学术
百度学术中相似的文章
[Chen,Du]的文章
[Jiang,Feng]的文章
[Fang,Liang]的文章
必应学术
必应学术中相似的文章
[Chen,Du]的文章
[Jiang,Feng]的文章
[Fang,Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。