题名 | Egocentric Action Recognition by Automatic Relation Modeling |
作者 | |
通讯作者 | Zheng,Wei Shi |
共同第一作者 | Li,Haoxin |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0162-8828
|
EISSN | 1939-3539
|
卷号 | PP期号:99页码:1-1 |
摘要 | Egocentric action recognition aims to recognize the actions of the camera wearers from egocentric videos. In egocentric action recognition, relation modeling is important, because the interactions between the camera wearer and the recorded persons or objects form complex relations in egocentric videos. However, only a few of existing methods model the relations between the camera wearer and the interacting persons, and moreover they require prior knowledge or auxiliary data to localize the interacting persons. In this work, we consider modeling the relations in a weakly supervised manner, i.e., without using annotations or prior knowledge about the interacting persons or objects, for egocentric action recognition. We form a weakly supervised framework by unifying automatic interactor localization and explicit relation modeling for the purpose of automatic relation modeling. Firstly, we learn to automatically localize the interactors, i.e., the body parts of the camera wearer and the interacting persons or objects, by learning a series of keypoints directly from video data. Secondly, more importantly, we develop an ego-relational LSTM to search for the optimal connections for explicit relation modeling, which reduces the human efforts for structure design. Extensive experiments on egocentric video datasets illustrate the effectiveness of our method. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | NSFC["U21A20471","U1911401","U1811461"]
; Guangdong NSF Project["2020B1515120085","2018B030312002"]
; Guangzhou Research Project[201902010037]
; Key-Area Research and Development Program of Guangzhou[202007030004]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000899419900030
|
出版者 | |
EI入藏号 | 20220811676937
|
EI主题词 | Computer vision
; Job analysis
; Long short-term memory
; Object recognition
|
EI分类号 | Computer Applications:723.5
; Vision:741.2
; Photographic Equipment:742.2
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85124766781
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9706375 |
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/327900 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China. 2.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China 3.Peng Cheng Laboratory, Shenzhen 518005, China 4.Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of Education, China. 5.Department of Computer Science and Engineering, Southern University of Science and Technology, China 6.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China. 7.State Key Lab of Intelligent Technologies and Systems, Beijing National Research Center for Information Science and Technology (BNRist), China. 8.Department of Automation, Tsinghua University, Beijing, 100084, China 9.Guangdong Province Key Laboratory of Information Security, P. R. China. |
推荐引用方式 GB/T 7714 |
Li,Haoxin,Zheng,Wei Shi,Zhang,Jianguo,et al. Egocentric Action Recognition by Automatic Relation Modeling[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2022,PP(99):1-1.
|
APA |
Li,Haoxin,Zheng,Wei Shi,Zhang,Jianguo,Hu,Haifeng,Lu,Jiwen,&Lai,Jian Huang.(2022).Egocentric Action Recognition by Automatic Relation Modeling.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,PP(99),1-1.
|
MLA |
Li,Haoxin,et al."Egocentric Action Recognition by Automatic Relation Modeling".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE PP.99(2022):1-1.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Egocentric_Action_Re(4602KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论