中文版 | English
题名

Merged Differential Grouping for Large-scale Global Optimization

作者
发表日期
2022
DOI
发表期刊
ISSN
1941-0026
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
The divide-and-conquer strategy has been widely used in cooperative co-evolutionary algorithms to deal with large-scale global optimization problems, where a target problem is decomposed into a set of lower-dimensional and tractable sub -problems to reduce the problem complexity. However, such a strategy usually demands a large number of function evaluations to obtain an accurate variable grouping. To address this issue, a merged differential grouping (MDG) method is proposed in this article based on the subset-subset interaction and binary search. In the proposed method, each variable is first identified as either a separable variable or a nonseparable variable. Afterward, all separable variables are put into the same subset, and the non-separable variables are divided into multiple subsets using a binary-tree-based iterative merging method. With the proposed algorithm, the computational complexity of interaction detection is reduced to O(max{n, n(ns) x log(2) k}), where n, n(ns)(<= n), and k(< n) indicate the numbers of decision variables, nonseparable variables, and subsets of nonseparable variables, respectively. The experimental results on benchmark problems show that MDG is very competitive with the other state-of-the-art methods in termsof efficiency and accuracy of problem decomposition.
关键词
相关链接[IEEE记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["61976143","61871272","61772392","61975135"] ; International Cooperation and Exchanges NSFC[61911530218] ; Guangdong Basic and Applied Basic Research Foundation["2019A1515010869","2020A1515010946","2021A1515012637"] ; Shenzhen Fundamental Research Program[JCYJ20190808173617147] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Scientific Research Foundation of Shenzhen University[860/2110312] ; ARC[DP190101271] ; Science Basic Research Plan in Shaanxi Province of China[2018JM6009] ; BGI-Research Shenzhen Open Funds[BGIRSZ20200002]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000892933300020
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9686963
引用统计
被引频次[WOS]:28
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327928
专题南方科技大学
作者单位
1.College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China. (e-mail: maxiaoliang@yeah.net)
2.College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.
3.School of Science (Computer Science and Software Engineering), RMIT University, Melbourne, VIC 3001, Australia.
4.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
5.School of Computer Science and Technology, Xidian University, Xi’an, 710071, China.
6.College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China, also with Shenzhen Pengcheng Laboratory, Shenzhen 518055, China, and also with the Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen 518055.
推荐引用方式
GB/T 7714
Ma,Xiaoliang,Huang,Zhitao,Li,Xiaodong,et al. Merged Differential Grouping for Large-scale Global Optimization[J]. IEEE Transactions on Evolutionary Computation,2022,PP(99):1-1.
APA
Ma,Xiaoliang,Huang,Zhitao,Li,Xiaodong,Wang,Lei,Qi,Yutao,&Zhu,Zexuan.(2022).Merged Differential Grouping for Large-scale Global Optimization.IEEE Transactions on Evolutionary Computation,PP(99),1-1.
MLA
Ma,Xiaoliang,et al."Merged Differential Grouping for Large-scale Global Optimization".IEEE Transactions on Evolutionary Computation PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma,Xiaoliang]的文章
[Huang,Zhitao]的文章
[Li,Xiaodong]的文章
百度学术
百度学术中相似的文章
[Ma,Xiaoliang]的文章
[Huang,Zhitao]的文章
[Li,Xiaodong]的文章
必应学术
必应学术中相似的文章
[Ma,Xiaoliang]的文章
[Huang,Zhitao]的文章
[Li,Xiaodong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。