中文版 | English
题名

IIoT based Trustworthy Demographic Dynamics Tracking with Advanced Bayesian Learning

作者
发表日期
2022
DOI
发表期刊
ISSN
2334-329X
EISSN
2327-4697
卷号10期号:5页码:2745-2754
摘要
Tracking demographic dynamics for the built environment is important for a smart city. As a kind of ubiquitous Industrial Internet of Things (IIoT) device, portable devices (e.g., mobile phones) afford a great potential to achieve this goal. Tracking the demographic dynamics illuminates two things: populations mobility (where do people go) and the related demographics (who are they). Many past studies have investigated the tracking of population dynamics; however, few of them tried tracking the demographic dynamics. In this context, our study proposed a ubiquitous IIoT based trustworthy approach for built environment demographic dynamics tracking. First, we employed a meta-graph-based data structure to represent users life patterns and projected them into a low-dimension space as uniform features. Then, based on the life-pattern features, we derived a variation-inference-based advanced Bayesian model to infer the demographics. Finally, taking a region in Tokyo as a case study, we compared our methods with baseline methods (heuristic algorithm, deep learning), and the result proved a superior accuracy (the MAPE improved by 0.07 to 0.28) as well as reliability (0.78 Pearson correlation coefficient with survey data).
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
EI入藏号
20220511570106
EI主题词
Bayesian networks ; Correlation methods ; Deep learning ; Dynamics ; Graphic methods ; Heuristic methods ; Telephone sets
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Telephone Systems and Equipment:718.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85123708140
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9693148
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327929
专题南方科技大学
作者单位
1.The University of Tokyo Center for Spatial Information Science, 222781 Kashiwa, Chiba, Japan, (e-mail: lipeiran_csis@csis.u-tokyo.ac.jp)
2.Center for Spatial Information Science, University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: zhang_ronan@csis.u-tokyo.ac.jp)
3.Center for Spatial Information Science, University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: liwenjing@csis.u-tokyo.ac.jp)
4.Global Information and Telecommunication Institute, Waseda University, 13148 Tokyo, Tokyo, Japan, (e-mail: keping.yu@aoni.waseda.jp)
5.Computing and Mathematics, Manchester Metropolitan University, 5289 Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland, M15 6BH (e-mail: dr.alikashif.b@ieee.org)
6.Computer Science, King Saud University, 37850 Riyadh, Riyadh Province, Saudi Arabia, (e-mail: aalzubi@ksu.edu.sa)
7.Center for Spatial Information Science, University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: miraclec@csis.u-tokyo.ac.jp)
8.SUSTech, 255310 Shenzhen, Guangdong, China, (e-mail: songxuan@csis.u-tokyo.ac.jp)
9.Center for Spatial Information Science, The University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: shiba@csis.u-tokyo.ac.jp)
推荐引用方式
GB/T 7714
Li,Peiran,Zhang,Haoran,Li,Wenjing,et al. IIoT based Trustworthy Demographic Dynamics Tracking with Advanced Bayesian Learning[J]. IEEE Transactions on Network Science and Engineering,2022,10(5):2745-2754.
APA
Li,Peiran.,Zhang,Haoran.,Li,Wenjing.,Yu,Keping.,Bashir,Ali Kashif.,...&Shibasaki,Ryosuke.(2022).IIoT based Trustworthy Demographic Dynamics Tracking with Advanced Bayesian Learning.IEEE Transactions on Network Science and Engineering,10(5),2745-2754.
MLA
Li,Peiran,et al."IIoT based Trustworthy Demographic Dynamics Tracking with Advanced Bayesian Learning".IEEE Transactions on Network Science and Engineering 10.5(2022):2745-2754.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Peiran]的文章
[Zhang,Haoran]的文章
[Li,Wenjing]的文章
百度学术
百度学术中相似的文章
[Li,Peiran]的文章
[Zhang,Haoran]的文章
[Li,Wenjing]的文章
必应学术
必应学术中相似的文章
[Li,Peiran]的文章
[Zhang,Haoran]的文章
[Li,Wenjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。