中文版 | English
题名

Federated Meta-Learning Enhanced Acoustic Radio Cooperative Framework for Ocean of Things

作者
发表日期
2022
DOI
发表期刊
ISSN
1932-4553
EISSN
1941-0484
摘要
Ocean of Things, consisting of multiple buoys distributed on the sea, is an acoustic radio cooperative wireless network that aims to acquire underwater information. In this paper, a deep neural network (DNN)-based receiver with data augmentation, termed chirp (C)-DNN, is developed for chirp modulation-based underwater acoustic communications at a single buoy. To further solve the problem that the training data at a single buoy may not be sufficient, a federated meta-learning (FML) scheme is proposed to train the DNN-based receiver by exploiting the model parameters from multiple buoys. We analyze the convergence performance of FML and derive a closed-form expression for the convergence rate, accounting for the impacts of scheduling ratios, local epochs, and data volumes on a single node. Simulation results show that the proposed C-DNN receiver that is trained with sufficient data achieves better bit error rate performance and lower complexity than classical matched filter (MF)-based detectors. The proposed FML also outperforms the MF-based method after several communication rounds and has better generalization than federated learning based systems.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85123382168
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327938
专题南方科技大学
作者单位
1.School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, China, (e-mail: ctzhaohao@mail.scut.edu.cn)
2.School of Electronic and Information Engineering, South China University of Tehcnology, Guang Zhou, Guang Dong, China, 510640 (e-mail: eefeiji@scut.edu.cn)
3.College of Information Science and Technology, Jinan University, 47885 Guangzhou, China, 510632 (e-mail: qiangli@jnu.edu.cn)
4.Guangzhou, Guangdong, China, 510640 (e-mail: eeqshguan@scut.edu.cn)
5.EEE and CSE, Southern University of Science and Technology, 255310 Shenzhen, China, 518055 (e-mail: s.wang@siat.ac.cn)
6.School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, China, 510641 (e-mail: eemwwen@scut.edu.cn)
推荐引用方式
GB/T 7714
Zhao,Hao,Ji,Fei,Li,Qiang,et al. Federated Meta-Learning Enhanced Acoustic Radio Cooperative Framework for Ocean of Things[J]. IEEE Journal of Selected Topics in Signal Processing,2022.
APA
Zhao,Hao,Ji,Fei,Li,Qiang,Guan,Quansheng,Wang,Shuai,&Wen,Miaowen.(2022).Federated Meta-Learning Enhanced Acoustic Radio Cooperative Framework for Ocean of Things.IEEE Journal of Selected Topics in Signal Processing.
MLA
Zhao,Hao,et al."Federated Meta-Learning Enhanced Acoustic Radio Cooperative Framework for Ocean of Things".IEEE Journal of Selected Topics in Signal Processing (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Hao]的文章
[Ji,Fei]的文章
[Li,Qiang]的文章
百度学术
百度学术中相似的文章
[Zhao,Hao]的文章
[Ji,Fei]的文章
[Li,Qiang]的文章
必应学术
必应学术中相似的文章
[Zhao,Hao]的文章
[Ji,Fei]的文章
[Li,Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。