中文版 | English
题名

Noise Removal and Feature Extraction in Airborne Radar Sounding Data of Ice Sheets

作者
通讯作者Tang,Xueyuan
发表日期
2022
DOI
发表期刊
EISSN
2072-4292
卷号14期号:2
摘要
The airborne ice-penetrating radar (IPR) is an effective method used for ice sheet exploration and is widely applied for detecting the internal structures of ice sheets and for understanding the mechanism of ice flow and the characteristics of the bottom of ice sheets. However, because of the ambient influence and the limitations of the instruments, IPR data are frequently overlaid with noise and interference, which further impedes the extraction of layer features and the interpretation of the physical characteristics of the ice sheet. In this paper, we first applied conventional filtering methods to remove the feature noise and interference in IPR data. Furthermore, machine learning methods were introduced in IPR data processing for noise removal and feature extraction. Inspired by a comparison of the filtering methods and machine learning methods, we propose a fusion method combining both filtering methods and machine-learning-based methods to optimize the feature extraction in IPR data. Field data tests indicated that, under different conditions of IPR data, the application of different methods and strategies can improve the layer feature extraction.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[41876230];National Natural Science Foundation of China[41941006];
WOS记录号
WOS:000758887800001
EI入藏号
20220411492407
EI主题词
Data handling ; Extraction ; Feature extraction ; Glaciers ; Machine learning
EI分类号
Data Processing and Image Processing:723.2 ; Chemical Operations:802.3
Scopus记录号
2-s2.0-85122993296
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327944
专题理学院_地球与空间科学系
工学院_海洋科学与工程系
作者单位
1.Key Laboratory of Polar Science of Ministry of Natural Resources (MNR),Polar Research Institute of China,Shanghai,200136,China
2.School of Oceanography,Shanghai Jiao Tong University,Shanghai,200030,China
3.School of Earth and Space Sciences,University of Science and Technology of China,Hefei,230026,China
4.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
5.College of Geo-Exploration Science and Technology,Jilin University,Changchun,130026,China
推荐引用方式
GB/T 7714
Tang,Xueyuan,Dong,Sheng,Luo,Kun,et al. Noise Removal and Feature Extraction in Airborne Radar Sounding Data of Ice Sheets[J]. Remote Sensing,2022,14(2).
APA
Tang,Xueyuan,Dong,Sheng,Luo,Kun,Guo,Jingxue,Li,Lin,&Sun,Bo.(2022).Noise Removal and Feature Extraction in Airborne Radar Sounding Data of Ice Sheets.Remote Sensing,14(2).
MLA
Tang,Xueyuan,et al."Noise Removal and Feature Extraction in Airborne Radar Sounding Data of Ice Sheets".Remote Sensing 14.2(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tang,Xueyuan]的文章
[Dong,Sheng]的文章
[Luo,Kun]的文章
百度学术
百度学术中相似的文章
[Tang,Xueyuan]的文章
[Dong,Sheng]的文章
[Luo,Kun]的文章
必应学术
必应学术中相似的文章
[Tang,Xueyuan]的文章
[Dong,Sheng]的文章
[Luo,Kun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。