中文版 | English
题名

The Important Role of Global State for Multi-Agent Reinforcement Learning

作者
通讯作者Zhang,Wei; Leng,Yuquan
发表日期
2022
DOI
发表期刊
EISSN
1999-5903
卷号14期号:1
摘要
Environmental information plays an important role in deep reinforcement learning (DRL). However, many algorithms do not pay much attention to environmental information. In multi-agent reinforcement learning decision-making, because agents need to make decisions combined with the information of other agents in the environment, this makes the environmental information more important. To prove the importance of environmental information, we added environmental information to the algorithm. We evaluated many algorithms on a challenging set of StarCraft II micromanagement tasks. Compared with the original algorithm, the standard deviation (except for the VDN algorithm) was smaller than that of the original algorithm, which shows that our algorithm has better stability. The average score of our algorithm was higher than that of the original algorithm (except for VDN and COMA), which shows that our work significantly outperforms existing multi-agent RL methods.
关键词
相关链接[Scopus记录]
收录类别
ESCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[51805237];National Natural Science Foundation of China[52175272];
WOS记录号
WOS:000759104500001
EI入藏号
20220211454055
EI主题词
Decision making ; Multi agent systems ; Reinforcement learning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Management:912.2
Scopus记录号
2-s2.0-85122545113
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/327951
专题工学院_机械与能源工程系
作者单位
1.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang,110016,China
2.Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang,110169,China
3.University of Chinese Academy of Sciences,Beijing,100049,China
4.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
5.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位机械与能源工程系;  南方科技大学
推荐引用方式
GB/T 7714
Li,Shuailong,Zhang,Wei,Leng,Yuquan,et al. The Important Role of Global State for Multi-Agent Reinforcement Learning[J]. Future Internet,2022,14(1).
APA
Li,Shuailong,Zhang,Wei,Leng,Yuquan,&Wang,Xiaohui.(2022).The Important Role of Global State for Multi-Agent Reinforcement Learning.Future Internet,14(1).
MLA
Li,Shuailong,et al."The Important Role of Global State for Multi-Agent Reinforcement Learning".Future Internet 14.1(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Shuailong]的文章
[Zhang,Wei]的文章
[Leng,Yuquan]的文章
百度学术
百度学术中相似的文章
[Li,Shuailong]的文章
[Zhang,Wei]的文章
[Leng,Yuquan]的文章
必应学术
必应学术中相似的文章
[Li,Shuailong]的文章
[Zhang,Wei]的文章
[Leng,Yuquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。