中文版 | English
题名

Quantum Dynamical Characterization and Simulation of Topological Phases with High-Order Band Inversion Surfaces

作者
通讯作者Wang,Ya; Wu,Jiansheng; Liu,Xiong Jun
共同第一作者Yu,Xiang Long; Ji,Wentao; Zhang,Lin
发表日期
2021-05-14
DOI
发表期刊
EISSN
2691-3399
卷号2期号:2
摘要

How to characterize topological quantum phases is a fundamental issue in the broad field of topological matter. From a dimension reduction approach, we propose the concept of high-order band inversion surfaces (BISs), which enable the optimal schemes to characterize equilibrium topological phases by far-from-equilibrium quantum dynamics, and further report the experimental simulation. We show that characterization of a d-dimensional (dD) topological phase can be reduced to lower-dimensional topological invariants in the high-order BISs, of which the nth-order BIS is a (d-n)D interface in momentum space. In quenching the system from trivial phase to topological regime, we unveil a high-order dynamical bulk-surface correspondence that the quantum dynamics exhibits nontrivial topological pattern in arbitrary nth-order BISs, which universally corresponds to and so characterizes the equilibrium topological phase of the postquench Hamiltonian. This high-order dynamical bulk-surface correspondence provides new and optimal dynamical schemes with fundamental advantages to simulate and detect topological states, in which through the highest-order BISs that are of zero dimension, the detection of topological phase relies on only minimal measurements. We experimentally build up a quantum simulator with spin qubits to investigate a three-dimensional chiral topological insulator through emulating each momentum one by one and measure the high-order dynamical bulk-surface correspondence, with the advantages of topological characterization via highest-order BISs being demonstrated.

相关链接[Scopus记录]
收录类别
SCI ; EI ; SSCI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000674720700001
EI入藏号
20212410480439
EI主题词
Dynamical systems ; Dynamics ; Hamiltonians ; Quantum theory ; Spin fluctuations ; Topological insulators
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85107726252
来源库
Scopus
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328021
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Department of Physics,Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Hefei National Laboratory for Physical Sciences at the Microscale,Department of Modern Physics,University of Science and Technology of China,Hefei,230026,China
3.CAS,Key Laboratory of Microscale Magnetic Resonance,University of Science and Technology of China,Hefei,230026,China
4.International Center for Quantum Materials,School of Physics,Peking University,Beijing,100871,China
5.Collaborative Innovation Center of Quantum Matter,Beijing,100871,China
6.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen, Guangdong,518055,China
第一作者单位物理系;  量子科学与工程研究院
通讯作者单位物理系;  量子科学与工程研究院
第一作者的第一单位物理系;  量子科学与工程研究院
推荐引用方式
GB/T 7714
Yu,Xiang Long,Ji,Wentao,Zhang,Lin,et al. Quantum Dynamical Characterization and Simulation of Topological Phases with High-Order Band Inversion Surfaces[J]. PRX Quantum,2021,2(2).
APA
Yu,Xiang Long,Ji,Wentao,Zhang,Lin,Wang,Ya,Wu,Jiansheng,&Liu,Xiong Jun.(2021).Quantum Dynamical Characterization and Simulation of Topological Phases with High-Order Band Inversion Surfaces.PRX Quantum,2(2).
MLA
Yu,Xiang Long,et al."Quantum Dynamical Characterization and Simulation of Topological Phases with High-Order Band Inversion Surfaces".PRX Quantum 2.2(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Yu et al. - 2021 - Q(5019KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu,Xiang Long]的文章
[Ji,Wentao]的文章
[Zhang,Lin]的文章
百度学术
百度学术中相似的文章
[Yu,Xiang Long]的文章
[Ji,Wentao]的文章
[Zhang,Lin]的文章
必应学术
必应学术中相似的文章
[Yu,Xiang Long]的文章
[Ji,Wentao]的文章
[Zhang,Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。