中文版 | English
题名

Joint Topology and Computation Resource Optimization for Federated Edge Learning

作者
DOI
发表日期
2021
ISBN
978-1-6654-2391-5
会议录名称
页码
1-6
会议日期
7-11 Dec. 2021
会议地点
Madrid, Spain
摘要
Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning. However, it consumes excessive learning time due to the existence of straggler devices caused by the heterogeneity of wireless channels and edge devices' resources. In this paper, a novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning, so as to improve the communication-and-computation efficiency. Specifically, a problem of jointly optimizing the gradient aggregation topology and computing speed is formulated to minimize the weighted summation of energy consumption and latency. To solve the mixed-integer nonlinear problem, we propose a novel penalty-based successive convex approximation method, which converges to a stationary point of the primal problem under mild conditions. Simulation results demonstrate that the proposed TOFEL scheme remarkably accelerates the federated learning process, and achieves a higher energy efficiency.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20221111786082
EI主题词
Energy efficiency ; Energy utilization ; Privacy-preserving techniques
EI分类号
Energy Conservation:525.2 ; Energy Utilization:525.3 ; Telecommunication; Radar, Radio and Television:716 ; Telephone Systems and Related Technologies; Line Communications:718 ; Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85126104189
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9682096
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328048
专题工学院_电子与电气工程系
作者单位
1.Southern University of Science and Technology (SUSTech),Department of Electrical and Electronic Engineering,China
2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong
3.The University Key Laboratory of Advanced Wireless Communications of Guangdong Province,SUSTech,China
第一作者单位电子与电气工程系;  南方科技大学
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Huang,Shanfeng,Wang,Shuai,Wang,Rui,et al. Joint Topology and Computation Resource Optimization for Federated Edge Learning[C],2021:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Shanfeng]的文章
[Wang,Shuai]的文章
[Wang,Rui]的文章
百度学术
百度学术中相似的文章
[Huang,Shanfeng]的文章
[Wang,Shuai]的文章
[Wang,Rui]的文章
必应学术
必应学术中相似的文章
[Huang,Shanfeng]的文章
[Wang,Shuai]的文章
[Wang,Rui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。