题名 | Periodical Weight Vector Update Using an Unbounded External Archive for Decomposition-Based Evolutionary Multi-Objective Optimization |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021
|
会议名称 | 2021 IEEE Symposium Series on Computational Intelligence
|
ISBN | 978-1-7281-9049-5
|
会议录名称 | |
页码 | 01-08
|
会议日期 | 5-7 Dec. 2021
|
会议地点 | Orlando, Florida, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Decomposition-based evolutionary multiobjective optimization (EMO) algorithms are very popular. The basic idea of decomposition-based EMO algorithms is to decompose a multi/many-objective optimization problem into several single-objective subproblems using a set of weight vectors and a scalarizing function. The weight vector specification plays an important role in decomposition-based EMO algorithms for obtaining a set of well-distributed solutions. In this paper, we propose a new method to update weight vectors for decomposition-based EMO algorithms. The proposed method uses an unbounded external archive to store all the nondominated solutions among examined solutions during the execution of an EMO algorithm, and periodically select a set of uniformly distributed solutions from the archive. Then, the selected solutions are projected to the weight vector space and used as a set of weight vectors for decomposition-based algorithms. The usefulness of the proposed weight vector update method is demonstrated by integrating it into a most frequently used decomposition-based EMO algorithm, i.e., MOEA/D. Experimental results show that the proposed weight vector update method works well on MOEA/D. Our experimental results also show that MOEA/D with the proposed weight vector update method outperforms other weight vector adaptation-based algorithms on many-objective test problems. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China["61876075","62002152"]
|
WOS研究方向 | Computer Science
; Engineering
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000824464300032
|
EI入藏号 | 20221011761280
|
EI主题词 | Evolutionary algorithms
; Multiobjective optimization
; Vector spaces
|
EI分类号 | Mathematics:921
; Algebra:921.1
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85125806670
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659851 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328054 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen,Longcan,Pang,Lie Meng,Ishibuchi,Hisao,et al. Periodical Weight Vector Update Using an Unbounded External Archive for Decomposition-Based Evolutionary Multi-Objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:01-08.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论