中文版 | English
题名

Periodical Weight Vector Update Using an Unbounded External Archive for Decomposition-Based Evolutionary Multi-Objective Optimization

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021
会议名称
2021 IEEE Symposium Series on Computational Intelligence
ISBN
978-1-7281-9049-5
会议录名称
页码
01-08
会议日期
5-7 Dec. 2021
会议地点
Orlando, Florida, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Decomposition-based evolutionary multiobjective optimization (EMO) algorithms are very popular. The basic idea of decomposition-based EMO algorithms is to decompose a multi/many-objective optimization problem into several single-objective subproblems using a set of weight vectors and a scalarizing function. The weight vector specification plays an important role in decomposition-based EMO algorithms for obtaining a set of well-distributed solutions. In this paper, we propose a new method to update weight vectors for decomposition-based EMO algorithms. The proposed method uses an unbounded external archive to store all the nondominated solutions among examined solutions during the execution of an EMO algorithm, and periodically select a set of uniformly distributed solutions from the archive. Then, the selected solutions are projected to the weight vector space and used as a set of weight vectors for decomposition-based algorithms. The usefulness of the proposed weight vector update method is demonstrated by integrating it into a most frequently used decomposition-based EMO algorithm, i.e., MOEA/D. Experimental results show that the proposed weight vector update method works well on MOEA/D. Our experimental results also show that MOEA/D with the proposed weight vector update method outperforms other weight vector adaptation-based algorithms on many-objective test problems.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China["61876075","62002152"]
WOS研究方向
Computer Science ; Engineering ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000824464300032
EI入藏号
20221011761280
EI主题词
Evolutionary algorithms ; Multiobjective optimization ; Vector spaces
EI分类号
Mathematics:921 ; Algebra:921.1 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85125806670
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659851
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328054
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Longcan,Pang,Lie Meng,Ishibuchi,Hisao,et al. Periodical Weight Vector Update Using an Unbounded External Archive for Decomposition-Based Evolutionary Multi-Objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:01-08.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Longcan]的文章
[Pang,Lie Meng]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Chen,Longcan]的文章
[Pang,Lie Meng]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Chen,Longcan]的文章
[Pang,Lie Meng]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。