中文版 | English
题名

Parallel Population-Based Simulated Annealing for High-Dimensional Black-Box Optimization

作者
DOI
发表日期
2021
会议名称
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
ISBN
978-1-7281-9049-5
会议录名称
页码
01-07
会议日期
5-7 Dec. 2021
会议地点
Orlando, FL, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In this paper, we present a simple yet efficient parallel version of simulated annealing (SA) for large-scale black-box optimization within the popular population-based framework. To achieve scalability, we adopt the island model, commonly used in parallel evolutionary algorithms, to update and communicate multiple independent SA instances. For maximizing efficiency, the copy-on-write operator is used to avoid performance-expensive lock when different instances exchange solutions. For better local search ability, individual step sizes are dynamically adjusted and learned during decomposition. Furthermore, we utilize the shared memory to reduce data redundancy and support concurrent fitness evaluations for challenging problems with costly memory consumption. Experiments based on the powerful Ray distributed computing library empirically demonstrate the effectiveness and efficiency of our parallel version on a set of 2000-dimensional benchmark functions (especially each is rotated with a 2000*2000 orthogonal matrix). To the best of our knowledge, these rotated functions with a memory-expensive data matrix were not tested in all previous works which considered only much lower dimensions. For reproducibility and benchmarking, the source code is made available at https://github.com/Evolutionary-Intelligence/PPSA.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Fundamental Research Program[JCYJ20200109141235597]
WOS研究方向
Computer Science ; Engineering ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000824464300138
EI入藏号
20221011761136
EI主题词
Efficiency ; Evolutionary algorithms ; Global optimization ; Matrix algebra
EI分类号
Heat Treatment Processes:537.1 ; Production Engineering:913.1 ; Algebra:921.1 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85125797415
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659957
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328056
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology (SUSTech),Shenzhen,China
2.Harbin Institute of Technology (HIT),Harbin,China
3.University of Technology Sydney (UTS),Sydney,Australia
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang,Youkui,Duan,Qiqi,Shao,Chang,et al. Parallel Population-Based Simulated Annealing for High-Dimensional Black-Box Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:01-07.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Youkui]的文章
[Duan,Qiqi]的文章
[Shao,Chang]的文章
百度学术
百度学术中相似的文章
[Zhang,Youkui]的文章
[Duan,Qiqi]的文章
[Shao,Chang]的文章
必应学术
必应学术中相似的文章
[Zhang,Youkui]的文章
[Duan,Qiqi]的文章
[Shao,Chang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。