题名 | Parallel Population-Based Simulated Annealing for High-Dimensional Black-Box Optimization |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
|
ISBN | 978-1-7281-9049-5
|
会议录名称 | |
页码 | 01-07
|
会议日期 | 5-7 Dec. 2021
|
会议地点 | Orlando, FL, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, we present a simple yet efficient parallel version of simulated annealing (SA) for large-scale black-box optimization within the popular population-based framework. To achieve scalability, we adopt the island model, commonly used in parallel evolutionary algorithms, to update and communicate multiple independent SA instances. For maximizing efficiency, the copy-on-write operator is used to avoid performance-expensive lock when different instances exchange solutions. For better local search ability, individual step sizes are dynamically adjusted and learned during decomposition. Furthermore, we utilize the shared memory to reduce data redundancy and support concurrent fitness evaluations for challenging problems with costly memory consumption. Experiments based on the powerful Ray distributed computing library empirically demonstrate the effectiveness and efficiency of our parallel version on a set of 2000-dimensional benchmark functions (especially each is rotated with a 2000*2000 orthogonal matrix). To the best of our knowledge, these rotated functions with a memory-expensive data matrix were not tested in all previous works which considered only much lower dimensions. For reproducibility and benchmarking, the source code is made available at https://github.com/Evolutionary-Intelligence/PPSA. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Fundamental Research Program[JCYJ20200109141235597]
|
WOS研究方向 | Computer Science
; Engineering
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000824464300138
|
EI入藏号 | 20221011761136
|
EI主题词 | Efficiency
; Evolutionary algorithms
; Global optimization
; Matrix algebra
|
EI分类号 | Heat Treatment Processes:537.1
; Production Engineering:913.1
; Algebra:921.1
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85125797415
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659957 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328056 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology (SUSTech),Shenzhen,China 2.Harbin Institute of Technology (HIT),Harbin,China 3.University of Technology Sydney (UTS),Sydney,Australia |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang,Youkui,Duan,Qiqi,Shao,Chang,et al. Parallel Population-Based Simulated Annealing for High-Dimensional Black-Box Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:01-07.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论