题名 | Initial Population Generation Method and its Effects on MOEA/D |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021
|
会议名称 | 2021 IEEE Symposium Series on Computational Intelligence
|
ISBN | 978-1-7281-9049-5
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 5-7 Dec. 2021
|
会议地点 | Orlando, FL, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | A good initial population generation method is of necessity to improve the performance of evolutionary multiobjective optimization (EMO) algorithms. However, until now only a few methods for generating an initial population have been proposed for EMO algorithms. In this paper, we propose a simple idea of generating an initial population for a popular decomposition-based algorithm, i.e., MOEA/D with the penalty-based boundary intersection (PBI) function, and demonstrate its effectiveness. The basic idea is to generate more initial solutions than the population size and to assign an appropriate solution to each weight vector. Firstly, we modify the initialization phase of MOEA/D through two different strategies based on this idea. Then, the modified MOEA/D algorithms are compared with the original MOEA/D on frequently-used many-objective test problems: DTLZ1, DTLZ3 and DTLZ4. Our experimental results clearly show that the proposed initial population generation method can significantly improve the performance of the original MOEA/D. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
|
WOS研究方向 | Computer Science
; Engineering
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000824464300275
|
EI入藏号 | 20221011761024
|
EI主题词 | Evolutionary algorithms
; Multiobjective optimization
|
EI分类号 | Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85125776076
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9660097 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328057 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Gong,Cheng,Pang,Lie Meng,Ishibuchi,Hisao. Initial Population Generation Method and its Effects on MOEA/D[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论