中文版 | English
题名

Predicting CMA-ES Operators as Inductive Biases for Shape Optimization Problems

作者
DOI
发表日期
2021
会议名称
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
ISBN
978-1-7281-9049-5
会议录名称
页码
01-07
会议日期
DEC 05-07, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Domain-dependent expertise knowledge and high-level abstractions to arbitrate between different problem domains can be considered to be essential components of how human problem-solvers build experience and reuse it over the course of their lifetime. However, replicating it from an algorithmic point of view is a less trivial endeavor. Existing knowledge transfer methods in optimization largely fail to provide more specific guidance on specifying the similarity of different optimization problems and the nature of complementary experiences formed on them. A more rigorously grounded approach can be found alternatively in metalearning. This notion neglects any hurdles on characterizing problem similarity in favor of focusing instead on methodology to form domain-dependent inductive biases and mechanisms to arbitrate between them. In principle, we proposed within our previous research methods for constructing inductive biases and predict these from procedural optimization data. However, while we obtained effective methodology, it does not allow the joint construction of predictive components and biases in a cohesive manner. We therefore show in our following study, that improved configurations can be derived for the CMA-ES algorithm which can serve as inductive biases, and that predictors can be trained to recall them. Particularly noteworthy, this scenario allows the construction of predictive component and bias iteratively in a joint manner. We demonstrate the efficacy of this approach in a shape optimization scenario, in which the inductive bias is predicted through an operator configuration in a problem-specific manner during run-time.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
European Union[766186]
WOS研究方向
Computer Science ; Engineering ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000824464300181
EI入藏号
20221011761329
EI主题词
Iterative methods ; Shape optimization
EI分类号
Computer Applications:723.5 ; Information Retrieval and Use:903.3 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85125760826
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9660001
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328061
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Birmingham,CERCIA,School of Computer Science,United Kingdom
2.Honda Research Institute Europe,Offenbach,Germany
3.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Friess,Stephen,Tino,Peter,Menzel,Stefan,et al. Predicting CMA-ES Operators as Inductive Biases for Shape Optimization Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:01-07.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Friess,Stephen]的文章
[Tino,Peter]的文章
[Menzel,Stefan]的文章
百度学术
百度学术中相似的文章
[Friess,Stephen]的文章
[Tino,Peter]的文章
[Menzel,Stefan]的文章
必应学术
必应学术中相似的文章
[Friess,Stephen]的文章
[Tino,Peter]的文章
[Menzel,Stefan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。