题名 | No Need for Interactions: Robust Model-Based Imitation Learning using Neural ODE |
作者 | |
通讯作者 | Li,Baopu; Zhou,Xin |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Robotics and Automation (ICRA)
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 978-1-7281-9078-5
|
会议录名称 | |
卷号 | 2021-May
|
页码 | 11088-11094
|
会议日期 | MAY 30-JUN 05, 2021
|
会议地点 | null,Xian,PEOPLES R CHINA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Interactions with either environments or expert policies during training are needed for most of the current imitation learning (IL) algorithms. For IL problems with no interactions, a typical approach is Behavior Cloning (BC). However, BC-like methods tend to be affected by distribution shift. To mitigate this problem, we come up with a Robust Model-Based Imitation Learning (RMBIL) framework that casts imitation learning as an end-to-end differentiable nonlinear closed-loop tracking problem. RMBIL applies Neural ODE to learn a precise multi-step dynamics and a robust tracking controller via Nonlinear Dynamics Inversion (NDI) algorithm. Then, the learned NDI controller will be combined with a trajectory generator, a conditional VAE, to imitate an expert's behavior. Theoretical derivation shows that the controller network can approximate an NDI when minimizing the training loss of Neural ODE. Experiments on Mujoco tasks also demonstrate that RMBIL is competitive to the state-of-the-art generative adversarial method (GAIL) and achieves at least 30% performance gain over BC in uneven surfaces. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Automation & Control Systems
; Robotics
|
WOS类目 | Automation & Control Systems
; Robotics
|
WOS记录号 | WOS:000771405403087
|
EI入藏号 | 20220911737826
|
EI主题词 | Cloning
; Computer vision
; Controllers
; Ordinary differential equations
|
EI分类号 | Genetic Engineering:461.8.1
; Computer Applications:723.5
; Control Equipment:732.1
; Vision:741.2
; Calculus:921.2
|
Scopus记录号 | 2-s2.0-85125495864
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561635 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328066 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.The Baidu Research,United States 2.ETH Zurich,Switzerland 3.The Department of Electronic and Electrical Engineering,The Southern University of Science and Technology,Shenzhen,China 4.The Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong |
推荐引用方式 GB/T 7714 |
Lin,Hao Chih,Li,Baopu,Zhou,Xin,et al. No Need for Interactions: Robust Model-Based Imitation Learning using Neural ODE[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:11088-11094.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论