中文版 | English
题名

No Need for Interactions: Robust Model-Based Imitation Learning using Neural ODE

作者
通讯作者Li,Baopu; Zhou,Xin
DOI
发表日期
2021
会议名称
IEEE International Conference on Robotics and Automation (ICRA)
ISSN
1050-4729
EISSN
2577-087X
ISBN
978-1-7281-9078-5
会议录名称
卷号
2021-May
页码
11088-11094
会议日期
MAY 30-JUN 05, 2021
会议地点
null,Xian,PEOPLES R CHINA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Interactions with either environments or expert policies during training are needed for most of the current imitation learning (IL) algorithms. For IL problems with no interactions, a typical approach is Behavior Cloning (BC). However, BC-like methods tend to be affected by distribution shift. To mitigate this problem, we come up with a Robust Model-Based Imitation Learning (RMBIL) framework that casts imitation learning as an end-to-end differentiable nonlinear closed-loop tracking problem. RMBIL applies Neural ODE to learn a precise multi-step dynamics and a robust tracking controller via Nonlinear Dynamics Inversion (NDI) algorithm. Then, the learned NDI controller will be combined with a trajectory generator, a conditional VAE, to imitate an expert's behavior. Theoretical derivation shows that the controller network can approximate an NDI when minimizing the training loss of Neural ODE. Experiments on Mujoco tasks also demonstrate that RMBIL is competitive to the state-of-the-art generative adversarial method (GAIL) and achieves at least 30% performance gain over BC in uneven surfaces.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Automation & Control Systems ; Robotics
WOS类目
Automation & Control Systems ; Robotics
WOS记录号
WOS:000771405403087
EI入藏号
20220911737826
EI主题词
Cloning ; Computer vision ; Controllers ; Ordinary differential equations
EI分类号
Genetic Engineering:461.8.1 ; Computer Applications:723.5 ; Control Equipment:732.1 ; Vision:741.2 ; Calculus:921.2
Scopus记录号
2-s2.0-85125495864
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561635
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328066
专题工学院_电子与电气工程系
作者单位
1.The Baidu Research,United States
2.ETH Zurich,Switzerland
3.The Department of Electronic and Electrical Engineering,The Southern University of Science and Technology,Shenzhen,China
4.The Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong
推荐引用方式
GB/T 7714
Lin,Hao Chih,Li,Baopu,Zhou,Xin,et al. No Need for Interactions: Robust Model-Based Imitation Learning using Neural ODE[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:11088-11094.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Hao Chih]的文章
[Li,Baopu]的文章
[Zhou,Xin]的文章
百度学术
百度学术中相似的文章
[Lin,Hao Chih]的文章
[Li,Baopu]的文章
[Zhou,Xin]的文章
必应学术
必应学术中相似的文章
[Lin,Hao Chih]的文章
[Li,Baopu]的文章
[Zhou,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。