题名 | Belief Space Partitioning for Symbolic Motion Planning |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Robotics and Automation (ICRA)
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 978-1-7281-9078-5
|
会议录名称 | |
卷号 | 2021-May
|
页码 | 8245-8251
|
会议日期 | MAY 30-JUN 05, 2021
|
会议地点 | null,Xian,PEOPLES R CHINA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | We propose a memory-constrained partition-based method to extract symbolic representations of the belief state and its dynamics in order to solve planning problems in a partially observable Markov decision process (POMDP). Our K-means partitioning strategy uses a fixed number of symbols to represent the partitions of the belief space and ensures the parameterization of the belief dynamics does not grow exponentially as the system dimension increases. By casting our problem as a partitioning of the POMDP, we can then solve planning problems using traditional symbolic planning solvers (such as HTN or A* solvers). Our work is motivated by an autonomous underwater vehicle navigation problem where the vehicle is affected by uncertain flow conditions and receives severely limited position observations. Simulation experiments are provided to validate the performance of the proposed algorithms. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Sleep Foundation[CNS-1828678];Air Force Office of Scientific Research[FA9550-19-1-0283];National Sleep Foundation[GCR-1934836];Office of Naval Research[N00014-19-1-2266];Office of Naval Research[N00014-19-1-2556];U.S. Naval Research Laboratory[N00173-17-1-G001];U.S. Naval Research Laboratory[N00173-19-P-1412];National Oceanic and Atmospheric Administration[NA16NOS0120028];National Sleep Foundation[S&AS-1849228];
|
WOS研究方向 | Automation & Control Systems
; Robotics
|
WOS类目 | Automation & Control Systems
; Robotics
|
WOS记录号 | WOS:000771405401106
|
EI入藏号 | 20220911738316
|
EI主题词 | Autonomous vehicles
; K-means clustering
; Markov processes
; Motion planning
|
EI分类号 | Highway Transportation:432
; Small Marine Craft:674.1
; Robot Applications:731.6
; Information Sources and Analysis:903.1
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85125448036
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561121 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328075 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.School of Electrical and Computer Engineering,Georgia Institute of Technology,Atlanta,30309,United States 2.School of Mathematics,Georgia Institute of Technology,Atlanta,30309,United States 3.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518000,China 4.Skidaway Institute of Oceanography,University of Georgia,Savannah,31411,United States |
推荐引用方式 GB/T 7714 |
Hou,Mengxue,Lin,Tony X.,Zhou,Haomin,et al. Belief Space Partitioning for Symbolic Motion Planning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:8245-8251.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论