中文版 | English
题名

Belief Space Partitioning for Symbolic Motion Planning

作者
DOI
发表日期
2021
会议名称
IEEE International Conference on Robotics and Automation (ICRA)
ISSN
1050-4729
EISSN
2577-087X
ISBN
978-1-7281-9078-5
会议录名称
卷号
2021-May
页码
8245-8251
会议日期
MAY 30-JUN 05, 2021
会议地点
null,Xian,PEOPLES R CHINA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
We propose a memory-constrained partition-based method to extract symbolic representations of the belief state and its dynamics in order to solve planning problems in a partially observable Markov decision process (POMDP). Our K-means partitioning strategy uses a fixed number of symbols to represent the partitions of the belief space and ensures the parameterization of the belief dynamics does not grow exponentially as the system dimension increases. By casting our problem as a partitioning of the POMDP, we can then solve planning problems using traditional symbolic planning solvers (such as HTN or A* solvers). Our work is motivated by an autonomous underwater vehicle navigation problem where the vehicle is affected by uncertain flow conditions and receives severely limited position observations. Simulation experiments are provided to validate the performance of the proposed algorithms.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Sleep Foundation[CNS-1828678];Air Force Office of Scientific Research[FA9550-19-1-0283];National Sleep Foundation[GCR-1934836];Office of Naval Research[N00014-19-1-2266];Office of Naval Research[N00014-19-1-2556];U.S. Naval Research Laboratory[N00173-17-1-G001];U.S. Naval Research Laboratory[N00173-19-P-1412];National Oceanic and Atmospheric Administration[NA16NOS0120028];National Sleep Foundation[S&AS-1849228];
WOS研究方向
Automation & Control Systems ; Robotics
WOS类目
Automation & Control Systems ; Robotics
WOS记录号
WOS:000771405401106
EI入藏号
20220911738316
EI主题词
Autonomous vehicles ; K-means clustering ; Markov processes ; Motion planning
EI分类号
Highway Transportation:432 ; Small Marine Craft:674.1 ; Robot Applications:731.6 ; Information Sources and Analysis:903.1 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85125448036
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561121
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328075
专题工学院_机械与能源工程系
作者单位
1.School of Electrical and Computer Engineering,Georgia Institute of Technology,Atlanta,30309,United States
2.School of Mathematics,Georgia Institute of Technology,Atlanta,30309,United States
3.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518000,China
4.Skidaway Institute of Oceanography,University of Georgia,Savannah,31411,United States
推荐引用方式
GB/T 7714
Hou,Mengxue,Lin,Tony X.,Zhou,Haomin,et al. Belief Space Partitioning for Symbolic Motion Planning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:8245-8251.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hou,Mengxue]的文章
[Lin,Tony X.]的文章
[Zhou,Haomin]的文章
百度学术
百度学术中相似的文章
[Hou,Mengxue]的文章
[Lin,Tony X.]的文章
[Zhou,Haomin]的文章
必应学术
必应学术中相似的文章
[Hou,Mengxue]的文章
[Lin,Tony X.]的文章
[Zhou,Haomin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。