题名 | LAFS: Learning-Based Application-Agnostic Flow Scheduling for Datacenters |
作者 | |
通讯作者 | Li,Qing |
DOI | |
发表日期 | 2021
|
ISSN | 1097-2641
|
ISBN | 978-1-6654-4332-6
|
会议录名称 | |
卷号 | 2021-October
|
页码 | 1-8
|
会议日期 | 29-31 Oct. 2021
|
会议地点 | Austin, TX, USA
|
摘要 | Many cloud applications in modern datacenters have very demanding latency requirements, making flow completion time (FCT) an important metric for evaluating the network performance. Existing network flow scheduling methods either base on pre-known information or have poor performance. Therefore, we present LAFS, an efficient learning-based flow scheduling approach which minimizes the FCT with estimated information of flows. LAFS combines system call monitoring and learning methods to learn the flow size and implements the Shortest Remaining Processing Time (SRPT) principle with in-network priorities. Moreover, LAFS adopts flowlets to alleviate the packets disorder problem in fine-grained flow scheduling. Our theoretical analysis and extensive simulations show that LAFS is a practical design and significantly outperforms other information-agnostic designs like DCTCP and PIAS under diverse workloads. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2020YFB1804704];National Natural Science Foundation of China[61972189];
|
EI入藏号 | 20220911710140
|
EI主题词 | Scheduling
|
EI分类号 | Management:912.2
|
Scopus记录号 | 2-s2.0-85125166713
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9679437 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328082 |
专题 | 南方科技大学 |
作者单位 | 1.Tsinghua Shenzhen International Graduate School,Shenzhen,China 2.Peng Cheng Laboratory,Shenzhen,China 3.Southern University Of Science And Technology,Shenzhen,China 4.Northeastern University,Shenyang,China 5.Beijing National Research Center For Information Science And Technology,Beijing,China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Han,Feixue,Li,Qing,Zhu,Keke,et al. LAFS: Learning-Based Application-Agnostic Flow Scheduling for Datacenters[C],2021:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
LAFS_Learning-Based_(1620KB) | 会议论文 | -- | 限制开放 | CC BY-NC-SA |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论