中文版 | English
题名

A Model-Based Exploration Policy in Deep Q-Network

作者
通讯作者Zhang,Wei; Leng,Yuquan
DOI
发表日期
2021
ISBN
978-1-6654-0631-4
会议录名称
页码
336-343
会议日期
3-4 Dec. 2021
会议地点
Chengdu, China
摘要
Reinforcement learning has successfully been used in many applications and achieved prodigious performance (such as video games), and DQN is a well-known algorithm in RL. However, there are some disadvantages in practical applications, and the exploration and exploitation dilemma is one of them. To solve this problem, common strategies about exploration like ϵ-greedy have risen. Unfortunately, there are sample inefficient and ineffective because of the uncertainty of later exploration. In this paper, we propose a model-based exploration method that learns the state transition model to explore. Using the training rules of machine learning, we can train the state transition model networks to improve exploration efficiency and sample efficiency. We compare our algorithm with ϵ-greedy on the Deep Q-Networks (DQN) algorithm and apply it to the Atari 2600 games. Our algorithm outperforms the decaying ϵ-greedy strategy when we evaluate our algorithm across 14 Atari games in the Arcade Learning Environment (ALE).
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20220911706199
EI主题词
Computer aided instruction ; Efficiency
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Education:901.2 ; Production Engineering:913.1
Scopus记录号
2-s2.0-85125104191
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9670573
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328083
专题工学院_机械与能源工程系
作者单位
1.University of Chinese Academy of Sciences,Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang,China
2.Southern University of Science and Technology,Department of Mechanical and Energy Engineering,Shenzhen,China
通讯作者单位机械与能源工程系
推荐引用方式
GB/T 7714
Li,Shuailong,Zhang,Wei,Leng,Yuquan,et al. A Model-Based Exploration Policy in Deep Q-Network[C],2021:336-343.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Shuailong]的文章
[Zhang,Wei]的文章
[Leng,Yuquan]的文章
百度学术
百度学术中相似的文章
[Li,Shuailong]的文章
[Zhang,Wei]的文章
[Leng,Yuquan]的文章
必应学术
必应学术中相似的文章
[Li,Shuailong]的文章
[Zhang,Wei]的文章
[Leng,Yuquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。