中文版 | English
题名

Linked Dynamic Graph CNN: Learning through Point Cloud by Linking Hierarchical Features

作者
通讯作者Fu,Chenglong
DOI
发表日期
2021
会议名称
27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
ISBN
978-1-6654-3154-5
会议录名称
页码
7-12
会议日期
NOV 26-28, 2021
会议地点
null,Shanghai,PEOPLES R CHINA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Learning through a point cloud is attractive be-cause a point cloud contains geometric data and can help robots understand environments in a robust manner. However, a point cloud is sparse, unstructured and unordered, and its accurate recognition by a traditional convolutional neural network (CNN) or a recurrent neural network (RNN) is difficult. Hence, the present paper proposes a linked dynamic graph CNN (LDGCNN) to directly classify and segment a point cloud. The present work removes the transformation network, links hierarchical features from dynamic graphs, freezes the feature extractor, and retrains the classifier in order to increase the performance of LDGCNN. Also, the paper describes LDGCNN using theoretical analysis and visualization. The LDGCNN is able to classify a point cloud consisting of 1024 three dimensional points without normal vectors in the ModelNet40 dataset, achieving 92.9% accuracy, which is better than the state-of-art. The LDGCNN also achieves state-of-the-art segmentation performance in the ShapeNet dataset.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[U1913205];
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Multidisciplinary
WOS记录号
WOS:000783817900002
EI入藏号
20220811682717
EI主题词
Classification (of information) ; Convolutional neural networks ; Graph neural networks
EI分类号
Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Information Sources and Analysis:903.1
Scopus记录号
2-s2.0-85124797161
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9665104
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328094
专题工学院_机械与能源工程系
作者单位
1.Southern University of Science and Technology,Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems and Guangdong Provincial,Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Department of Mechanical and Energy Engineering,Shenzhen,518055,China
2.University of British Columbia,Department of Mechanical Engineering,Vancouver,V6T1Z4,Canada
3.Tsinghua University,Department of Mechanical Engineering,Beijing,100084,China
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Zhang,Kuangen,Hao,Ming,Wang,Jing,et al. Linked Dynamic Graph CNN: Learning through Point Cloud by Linking Hierarchical Features[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:7-12.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Kuangen]的文章
[Hao,Ming]的文章
[Wang,Jing]的文章
百度学术
百度学术中相似的文章
[Zhang,Kuangen]的文章
[Hao,Ming]的文章
[Wang,Jing]的文章
必应学术
必应学术中相似的文章
[Zhang,Kuangen]的文章
[Hao,Ming]的文章
[Wang,Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。