题名 | Linked Dynamic Graph CNN: Learning through Point Cloud by Linking Hierarchical Features |
作者 | |
通讯作者 | Fu,Chenglong |
DOI | |
发表日期 | 2021
|
会议名称 | 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
|
ISBN | 978-1-6654-3154-5
|
会议录名称 | |
页码 | 7-12
|
会议日期 | NOV 26-28, 2021
|
会议地点 | null,Shanghai,PEOPLES R CHINA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Learning through a point cloud is attractive be-cause a point cloud contains geometric data and can help robots understand environments in a robust manner. However, a point cloud is sparse, unstructured and unordered, and its accurate recognition by a traditional convolutional neural network (CNN) or a recurrent neural network (RNN) is difficult. Hence, the present paper proposes a linked dynamic graph CNN (LDGCNN) to directly classify and segment a point cloud. The present work removes the transformation network, links hierarchical features from dynamic graphs, freezes the feature extractor, and retrains the classifier in order to increase the performance of LDGCNN. Also, the paper describes LDGCNN using theoretical analysis and visualization. The LDGCNN is able to classify a point cloud consisting of 1024 three dimensional points without normal vectors in the ModelNet40 dataset, achieving 92.9% accuracy, which is better than the state-of-art. The LDGCNN also achieves state-of-the-art segmentation performance in the ShapeNet dataset. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[U1913205];
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Multidisciplinary
|
WOS记录号 | WOS:000783817900002
|
EI入藏号 | 20220811682717
|
EI主题词 | Classification (of information)
; Convolutional neural networks
; Graph neural networks
|
EI分类号 | Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Information Sources and Analysis:903.1
|
Scopus记录号 | 2-s2.0-85124797161
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9665104 |
引用统计 |
被引频次[WOS]:16
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328094 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems and Guangdong Provincial,Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Department of Mechanical and Energy Engineering,Shenzhen,518055,China 2.University of British Columbia,Department of Mechanical Engineering,Vancouver,V6T1Z4,Canada 3.Tsinghua University,Department of Mechanical Engineering,Beijing,100084,China |
第一作者单位 | 机械与能源工程系 |
通讯作者单位 | 机械与能源工程系 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Kuangen,Hao,Ming,Wang,Jing,et al. Linked Dynamic Graph CNN: Learning through Point Cloud by Linking Hierarchical Features[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:7-12.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论