题名 | Comparison of machine learning regression algorithms for foot placement prediction |
作者 | |
通讯作者 | Fu,Chenglong |
DOI | |
发表日期 | 2021
|
会议名称 | 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
|
ISBN | 978-1-6654-3154-5
|
会议录名称 | |
页码 | 169-174
|
会议日期 | 2021, November
|
会议地点 | Shanghai, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Foot placement early prediction is important for designing compliant controllers for wearable robotic systems. There have been many researches on human walking gait analysis, but most of them focus on historic foot placement measurement and estimation, the work on foot placement early prediction has been rarely seen. This paper investigated three machine learning regression algorithms for foot placement prediction: Linear Regression, Support Vector Machine Regression and Gaussian Process Regression. The regression models were trained on the collected walking data set, and tested on the test data set, in which the subject and the walking speeds were different from those in the training data set. The results indicated that Gaussian Process Regression showed the best performance in foot placement prediction, and the prediction error decreased with the window size of the input data increasing. The experimental results demonstrated that, given the foot position information during the early 0.2 s in the swing phase, Gaussian Process Regression can predict the next foot placement. The Root Mean Squared Error was 0.0440 m and 0.0424 m along the walking direction and cross-walking direction, respectively, which was less than 5% of the average stride length. The results of this paper are expected to help researchers select a suitable regression model for gait prediction and inspire the following works. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key R&D Program of China["2018YFB1305400","2018YFC2001601"]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Multidisciplinary
|
WOS记录号 | WOS:000783817900029
|
EI入藏号 | 20220811682769
|
EI主题词 | Gaussian distribution
; Gaussian noise (electronic)
; Learning algorithms
; Mean square error
; Regression analysis
; Statistical tests
; Support vector machines
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Machine Learning:723.4.2
; Probability Theory:922.1
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85124795328
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9665043 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328096 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Shenzhen,518055,China 2.Guangdong Prov. Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China 3.Department of Mechanical Engineering,University of British Columbia,Vancouver,V6T 1Z4,Canada |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen,Xinxing,Liu,Zijian,Zhu,Jiale,et al. Comparison of machine learning regression algorithms for foot placement prediction[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:169-174.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
M2VIP21_Comparison_o(3315KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论