中文版 | English
题名

Finite-Time Theory for Momentum Q-learning

作者
发表日期
2021
会议录名称
页码
665-674
摘要
Existing studies indicate that momentum ideas in conventional optimization can be used to improve the performance of Q-learning algorithms. However, the finite-time analysis for momentum-based Q-learning algorithms is only available for the tabular case without function approximation. This paper analyzes a class of momentum-based Q-learning algorithms with finite-time convergence guarantee. Specifically, we propose the MomentumQ algorithm, which integrates the Nesterov's and Polyak's momentum schemes, and generalizes the existing momentum-based Q-learning algorithms. For the infinite state-action space case, we establish the convergence guarantee for MomentumQ with linear function approximation under Markovian sampling. In particular, we characterize a finite-time convergence rate which is provably faster than the vanilla Q-learning. This is the first finite-time analysis for momentum-based Q-learning algorithms with function approximation. For the tabular case under synchronous sampling, we also obtain a finite-time convergence rate that is slightly better than the SpeedyQ [Azar et al., 2011]. Finally, we demonstrate through various experiments that the proposed MomentumQ outperforms other momentum-based Q-learning algorithms.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20220711617512
EI主题词
Approximation algorithms ; Learning algorithms ; Momentum
EI分类号
Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Mathematics:921 ; Mechanics:931.1
Scopus记录号
2-s2.0-85124314296
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328122
专题工学院_机械与能源工程系
作者单位
1.Department of Electrical and Computer Engineering,The Ohio State University,Columbus,United States
2.Department of Electrical and Computer Engineering,National University of Singapore,Singapore,Singapore
3.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Weng,Bowen,Xiong,Huaqing,Zhao,Lin,et al. Finite-Time Theory for Momentum Q-learning[C],2021:665-674.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Weng,Bowen]的文章
[Xiong,Huaqing]的文章
[Zhao,Lin]的文章
百度学术
百度学术中相似的文章
[Weng,Bowen]的文章
[Xiong,Huaqing]的文章
[Zhao,Lin]的文章
必应学术
必应学术中相似的文章
[Weng,Bowen]的文章
[Xiong,Huaqing]的文章
[Zhao,Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。