题名 | Reference Point Specification for Greedy Hypervolume Subset Selection |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-6654-4208-4
|
会议录名称 | |
页码 | 168-175
|
会议日期 | OCT 17-20, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Hypervolume subset selection (HSS) aims to select a subset with a fixed size from a candidate solution set so that the hypervolume of the subset is maximized. The greedy HSS (GHSS) is the most efficient way for solving the HSS problem. When we use GHSS, we implicitly assume that well-distributed solutions over the entire Pareto front will be selected. However, the distribution of selected solutions by GHSS has not been studied. In this paper, we investigate this issue by examining selected solution subsets for different reference point specifications in GHSS. First, we show that a sufficiently large reference point is a good choice for GHSS to select a well-distributed subset on a triangular Pareto front. However, it is not easy to properly specify a reference point for an inverted triangular Pareto front. Then, we propose a dynamic reference point specification method for GHSS to select a well-distributed subset for various types of Pareto fronts. Static and dynamic reference point specifications are compared through computational experiments using 3- and 5-objective candidate solution sets from various types of Pareto front shapes. The experimental results demonstrate the effect of different reference point specifications on the subsets selected by GHSS and the usefulness of the dynamic reference point specification for GHSS. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075];National Natural Science Foundation of China[62002152];
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000800532000023
|
EI入藏号 | 20220711617254
|
EI主题词 | Evolutionary algorithms
; Set theory
|
EI分类号 | Codes and Standards:902.2
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
Scopus记录号 | 2-s2.0-85124311381
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9658655 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328123 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Shang,Ke,Ishibuchi,Hisao,Pang,Lie Meng,et al. Reference Point Specification for Greedy Hypervolume Subset Selection[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:168-175.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论