题名 | Proposal of a New Test Problem for Large-Scale Multi- and Many-Objective Optimization |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-6654-4208-4
|
会议录名称 | |
页码 | 484-491
|
会议日期 | OCT 17-20, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The research on large-scale multi- and many-objective optimization has received increasing attention in the evolutionary multi-objective optimization (EMO) community. A number of large-scale EMO algorithms based on different strategies (e.g., divide-and-conquer, coevolution, and dimensionality reduction) have been proposed over the last decade. The performance of the large-scale EMO algorithms was empirically evaluated using several benchmark test suites, including the ZDT, DTLZ, WFG, MaF, UF and LSMOP test suites. Even though these test suites are theoretically scalable to any number of decision variables, they are not necessarily appropriate for examining the performance of large-scale EMO algorithms. In fact, among these benchmark test suites, only the LSMOP test suite is specifically designed to test the performance of large-scale EMO algorithms. In this paper, we propose a new scalable multi- and many-objective test problem for examining large-scale EMO algorithms. The proposed test problem has the following features: 1) the number of objectives and decision variables can be arbitrarily specified; 2) the interaction strength among the objectives can be adjusted by a correlation parameter. The performance of six EMO algorithms is examined on the new test problem. Our experimental results show that the proposed new test problem poses difficulties to some state-of-the-art large-scale EMO algorithms. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075];National Natural Science Foundation of China[62002152];
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000800532000072
|
EI入藏号 | 20220711616797
|
EI主题词 | Benchmarking
; Evolutionary algorithms
; Multiobjective optimization
; Testing
|
EI分类号 | Management:912.2
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85124307552
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659260 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328124 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Pang,Lie Meng,Shang,Ke,Chen,Longcan,et al. Proposal of a New Test Problem for Large-Scale Multi- and Many-Objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:484-491.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论