中文版 | English
题名

Proposal of a New Test Problem for Large-Scale Multi- and Many-Objective Optimization

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021
会议名称
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISSN
1062-922X
ISBN
978-1-6654-4208-4
会议录名称
页码
484-491
会议日期
OCT 17-20, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The research on large-scale multi- and many-objective optimization has received increasing attention in the evolutionary multi-objective optimization (EMO) community. A number of large-scale EMO algorithms based on different strategies (e.g., divide-and-conquer, coevolution, and dimensionality reduction) have been proposed over the last decade. The performance of the large-scale EMO algorithms was empirically evaluated using several benchmark test suites, including the ZDT, DTLZ, WFG, MaF, UF and LSMOP test suites. Even though these test suites are theoretically scalable to any number of decision variables, they are not necessarily appropriate for examining the performance of large-scale EMO algorithms. In fact, among these benchmark test suites, only the LSMOP test suite is specifically designed to test the performance of large-scale EMO algorithms. In this paper, we propose a new scalable multi- and many-objective test problem for examining large-scale EMO algorithms. The proposed test problem has the following features: 1) the number of objectives and decision variables can be arbitrarily specified; 2) the interaction strength among the objectives can be adjusted by a correlation parameter. The performance of six EMO algorithms is examined on the new test problem. Our experimental results show that the proposed new test problem poses difficulties to some state-of-the-art large-scale EMO algorithms.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075];National Natural Science Foundation of China[62002152];
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000800532000072
EI入藏号
20220711616797
EI主题词
Benchmarking ; Evolutionary algorithms ; Multiobjective optimization ; Testing
EI分类号
Management:912.2 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85124307552
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659260
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328124
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Pang,Lie Meng,Shang,Ke,Chen,Longcan,et al. Proposal of a New Test Problem for Large-Scale Multi- and Many-Objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:484-491.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pang,Lie Meng]的文章
[Shang,Ke]的文章
[Chen,Longcan]的文章
百度学术
百度学术中相似的文章
[Pang,Lie Meng]的文章
[Shang,Ke]的文章
[Chen,Longcan]的文章
必应学术
必应学术中相似的文章
[Pang,Lie Meng]的文章
[Shang,Ke]的文章
[Chen,Longcan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。