中文版 | English
题名

A Decomposition-based Hybrid Evolutionary Algorithm for Multi-modal Multi-objective Optimization

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021
ISSN
1062-922X
会议录名称
页码
160-167
摘要
Multi-modal multi-objective optimization problems (MMOPs) have received increasing attention from the evolutionary multi-objective optimization community. To solve MMOPs, an optimizer is required to locate multiple sets of Pareto optimal solutions in the decision space. In this paper, a novel decomposition-based hybrid evolutionary algorithm is proposed for handling MMOPs efficiently. In the proposed algorithm, each reference vector is associated with a sub-population. In this manner, each reference vector is able to preserve multiple optima of the corresponding sub-problem in its own sub-population. In each generation, the following three procedures are used to update each sub-population. First, the sub-population evolves independently based on the deterministic crowding mechanism to maintain the diversity in the decision space. Second, the sub-population evolves in a collaborative manner with neighboring sub-populations. Subsequently, solutions that are converging to the same optimal solution are identified. All identified solutions except for the best one are re-initialized. This mechanism impels the solutions in each sub-population to converge to different optima in the decision space. Experimental results show that the proposed algorithm achieves superior performance in comparison with four state-of-the-art algorithms on various test problems.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075];
EI入藏号
20220711617156
EI主题词
Evolutionary algorithms ; Optimal systems ; Pareto principle
EI分类号
Optimization Techniques:921.5 ; Systems Science:961
Scopus记录号
2-s2.0-85124285916
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328125
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Peng,Yiming,Ishibuchi,Hisao. A Decomposition-based Hybrid Evolutionary Algorithm for Multi-modal Multi-objective Optimization[C],2021:160-167.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng,Yiming]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Peng,Yiming]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Peng,Yiming]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。