中文版 | English
题名

Improving Local Search Hypervolume Subset Selection in Evolutionary Multi-objective Optimization

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021
会议名称
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISSN
1062-922X
ISBN
978-1-6654-4208-4
会议录名称
页码
751-757
会议日期
OCT 17-20, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Hypervolume subset selection is a hot topic in the field of evolutionary multi-objective optimization (EMO) due to the increasing needs of selecting a small set of representative solutions from a large set of non-dominated solutions (e.g., unbounded external archive). To maximize the hypervolume (HV) of the selected subset, a number of HV subset selction (HSS) methods have been proposed. Greedy forward selection (GFS) subset selection method is the most popular one, which has been actively investigated in the literature. However, few studies focus on local search (LS) HSS method, which is similar to the mechanism of SMS-EMOA. The time cost of the LS method is usually high, and the quality of the subset selected by this method is always poor. To address these two issues, in this paper, we first adopt an HV contribution update strategy to the original LS method to significantly reduce its time cost. In addition, two efficient strategies are proposed to improve the performance of the LS method to get a better subset. Finally, experiments are conducted to show the effectiveness of the improved LS method.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075];National Natural Science Foundation of China[62002152];
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000800532000116
EI入藏号
20220711617167
EI主题词
Evolutionary algorithms ; Local search (optimization) ; Multiobjective optimization
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85124277319
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659147
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328127
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Nan,Yang,Shang,Ke,Ishibuchi,Hisao,et al. Improving Local Search Hypervolume Subset Selection in Evolutionary Multi-objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:751-757.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。