题名 | Improving Local Search Hypervolume Subset Selection in Evolutionary Multi-objective Optimization |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-6654-4208-4
|
会议录名称 | |
页码 | 751-757
|
会议日期 | OCT 17-20, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Hypervolume subset selection is a hot topic in the field of evolutionary multi-objective optimization (EMO) due to the increasing needs of selecting a small set of representative solutions from a large set of non-dominated solutions (e.g., unbounded external archive). To maximize the hypervolume (HV) of the selected subset, a number of HV subset selction (HSS) methods have been proposed. Greedy forward selection (GFS) subset selection method is the most popular one, which has been actively investigated in the literature. However, few studies focus on local search (LS) HSS method, which is similar to the mechanism of SMS-EMOA. The time cost of the LS method is usually high, and the quality of the subset selected by this method is always poor. To address these two issues, in this paper, we first adopt an HV contribution update strategy to the original LS method to significantly reduce its time cost. In addition, two efficient strategies are proposed to improve the performance of the LS method to get a better subset. Finally, experiments are conducted to show the effectiveness of the improved LS method. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075];National Natural Science Foundation of China[62002152];
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000800532000116
|
EI入藏号 | 20220711617167
|
EI主题词 | Evolutionary algorithms
; Local search (optimization)
; Multiobjective optimization
|
EI分类号 | Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85124277319
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659147 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328127 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Nan,Yang,Shang,Ke,Ishibuchi,Hisao,et al. Improving Local Search Hypervolume Subset Selection in Evolutionary Multi-objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:751-757.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论