题名 | Capture Uncertainties in Deep Neural Networks for Safe Operation of Autonomous Driving Vehicles |
作者 | |
通讯作者 | Li,Dachuan; Hao,Qi |
DOI | |
发表日期 | 2021
|
ISBN | 978-1-6654-1193-6
|
会议录名称 | |
页码 | 826-835
|
会议日期 | 30 Sept.-3 Oct. 2021
|
会议地点 | New York City, NY, USA
|
摘要 | Uncertainties in Deep Neural Network (DNN)-based perception and vehicle's motion pose challenges to the development of safe autonomous driving vehicles. In this paper, we propose a safe motion planning framework featuring the quantification and propagation of DNN-based perception uncertainties and motion uncertainties. Contributions of this work are twofold: (1) A Bayesian Deep Neural network model which detects 3D objects and quantitatively capture the associated aleatoric and epistemic uncertainties of DNNs; (2) An uncertainty-aware motion planning algorithm (PU-RRT) that accounts for uncertainties in object detection and ego-vehicle's motion. The proposed approaches are validated via simulated complex scenarios built in CARLA. Experimental results show that the proposed motion planning scheme can cope with uncertainties of DNN-based perception and vehicle motion, and improve the operational safety of autonomous vehicles while still achieving desirable efficiency. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20220611605379
|
EI主题词 | Autonomous vehicles
; Backpropagation
; Intelligent vehicle highway systems
; Motion planning
; Object detection
; Three dimensional computer graphics
; Uncertainty analysis
|
EI分类号 | Highway Systems:406.1
; Highway Transportation:432
; Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Robot Applications:731.6
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85124150110
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9644766 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328134 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,518055,China 2.College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,518060,China 3.Sifakis Research Institute For Trustworthy Autonomous Systems,Shenzhen,518055,China 4.Huawei Technologies Co. Ltd.,Shenzhen,518129,China 5. |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ding,Liuhui,Li,Dachuan,Liu,Bowen,et al. Capture Uncertainties in Deep Neural Networks for Safe Operation of Autonomous Driving Vehicles[C],2021:826-835.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论