中文版 | English
题名

Capture Uncertainties in Deep Neural Networks for Safe Operation of Autonomous Driving Vehicles

作者
通讯作者Li,Dachuan; Hao,Qi
DOI
发表日期
2021
ISBN
978-1-6654-1193-6
会议录名称
页码
826-835
会议日期
30 Sept.-3 Oct. 2021
会议地点
New York City, NY, USA
摘要
Uncertainties in Deep Neural Network (DNN)-based perception and vehicle's motion pose challenges to the development of safe autonomous driving vehicles. In this paper, we propose a safe motion planning framework featuring the quantification and propagation of DNN-based perception uncertainties and motion uncertainties. Contributions of this work are twofold: (1) A Bayesian Deep Neural network model which detects 3D objects and quantitatively capture the associated aleatoric and epistemic uncertainties of DNNs; (2) An uncertainty-aware motion planning algorithm (PU-RRT) that accounts for uncertainties in object detection and ego-vehicle's motion. The proposed approaches are validated via simulated complex scenarios built in CARLA. Experimental results show that the proposed motion planning scheme can cope with uncertainties of DNN-based perception and vehicle motion, and improve the operational safety of autonomous vehicles while still achieving desirable efficiency.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20220611605379
EI主题词
Autonomous vehicles ; Backpropagation ; Intelligent vehicle highway systems ; Motion planning ; Object detection ; Three dimensional computer graphics ; Uncertainty analysis
EI分类号
Highway Systems:406.1 ; Highway Transportation:432 ; Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Robot Applications:731.6 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85124150110
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9644766
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328134
专题工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,518055,China
2.College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,518060,China
3.Sifakis Research Institute For Trustworthy Autonomous Systems,Shenzhen,518055,China
4.Huawei Technologies Co. Ltd.,Shenzhen,518129,China
5.
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ding,Liuhui,Li,Dachuan,Liu,Bowen,et al. Capture Uncertainties in Deep Neural Networks for Safe Operation of Autonomous Driving Vehicles[C],2021:826-835.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ding,Liuhui]的文章
[Li,Dachuan]的文章
[Liu,Bowen]的文章
百度学术
百度学术中相似的文章
[Ding,Liuhui]的文章
[Li,Dachuan]的文章
[Liu,Bowen]的文章
必应学术
必应学术中相似的文章
[Ding,Liuhui]的文章
[Li,Dachuan]的文章
[Liu,Bowen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。