题名 | Two-Stage Minimax Regret-Based Self-Scheduling Strategy for Virtual Power Plants |
作者 | |
DOI | |
发表日期 | 2021
|
ISSN | 1944-9925
|
EISSN | 1944-9933
|
ISBN | 978-1-6654-4630-3
|
会议录名称 | |
卷号 | 2021-July
|
页码 | 1-5
|
会议日期 | 26-29 July 2021
|
会议地点 | Washington, DC, USA
|
摘要 | The market and renewable generation uncertainties cast great challenges to the profit-oriented self-scheduling of commercial virtual power plants (VPP). To address the uncertainty issues, this paper proposes a two-stage minimax regret (MMR)-based optimization model to reach optimal VPP self-scheduling solutions, in which the underneath problem is intrinsically NP-hard. To obtain an exact solution of the formulated problem, we firstly reformulate it into a two-stage robust optimization (TSRO) problem with fixed recourse, then re-solve it by adopting the column-and-constraint generation algorithm. In the numerical experiments, we evaluate the performance of the proposed MMR approach by comparing it with the maximin profit approach and the perfect information approach under different occasions. The results suggest that the two-stage MMR approach can achieve a near-optimal solution. Also, it is demonstrated that the performance of the MMR approach is robust in highly volatile environments and significantly penalizing balancing markets. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[72071100];
|
EI入藏号 | 20220611604680
|
EI主题词 | Commerce
; Optimization
; Scheduling
|
EI分类号 | Industrial Economics:911.2
; Management:912.2
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85124126762
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9637835 |
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328137 |
专题 | 南方科技大学 工学院_电子与电气工程系 |
作者单位 | 1.Southern University of Science and Technology,Dept of Electrical and Electronic Engineering,Shenzhen,China 2.Brunel Institute of Power Systems,Brunel University London,London,United Kingdom |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang,Han,Jia,Youwei,Lai,Chun Sing,et al. Two-Stage Minimax Regret-Based Self-Scheduling Strategy for Virtual Power Plants[C],2021:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论