中文版 | English
题名

Clustering-Based Subset Selection in Evolutionary Multiobjective Optimization

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021
会议名称
Proc. of 2021 IEEE International Conference on Systems, Man, and Cybernetics
ISSN
1062-922X
ISBN
978-1-6654-4208-4
会议录名称
页码
468-475
会议日期
October 17-20, 2021
会议地点
Melbourne, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Subset selection is an important component in evolutionary multiobjective optimization (EMO) algorithms. Clustering, as a classic method to group similar data points together, has been used for subset selection in some fields. However, clustering-based methods have not been evaluated in the context of subset selection from solution sets obtained by EMO algorithms. In this paper, we first review some classic clustering algorithms. We also point out that another popular subset selection method, i.e., inverted generational distance (IGD)-based subset selection, can be viewed as clustering. Then, we perform a comprehensive experimental study to evaluate the performance of various clustering algorithms in different scenarios. Experimental results are analyzed in detail, and some suggestions about the use of clustering algorithms for subset selection are derived. Additionally, we demonstrate that decision maker's preference can be introduced to clustering-based subset selection.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075]
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000800532000070
EI入藏号
20220711616899
EI主题词
Decision making ; Evolutionary algorithms ; Multiobjective optimization ; Set theory
EI分类号
Information Sources and Analysis:903.1 ; Management:912.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85123337905
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9658582
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328154
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Weiyu,Ishibuchi,Hisao,Shang,Ke. Clustering-Based Subset Selection in Evolutionary Multiobjective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:468-475.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2108.08453v2.pdf(927KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
百度学术
百度学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
必应学术
必应学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。