题名 | Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis |
作者 | |
通讯作者 | Zhang,Zezhong |
DOI | |
发表日期 | 2021
|
ISSN | 1948-3244
|
EISSN | 1558-2248
|
ISBN | 978-1-6654-2852-1
|
会议录名称 | |
卷号 | 2021-September
|
期号 | 99
|
页码 | 601-605
|
会议日期 | 27-30 Sept. 2021
|
会议地点 | Lucca, Italy
|
出版者 | |
摘要 | T In recent years, the attempts on distilling mobile data into useful knowledge have led to the deployment of machine learning algorithms at the network edge. Principal component analysis (PCA) is a classic technique for extracting the linear structure of a dataset, which is useful for feature extraction and data compression. In this work, we propose the deployment of distributed PCA over a multi-access channel based on the algorithm of stochastic gradient descent to learn the dominant feature space of a distributed dataset at multiple devices. Over- the-air aggregation is adopted to reduce the multi-access latency, giving the name over-the-air PCA. The novelty of this design lies in exploiting channel noise to accelerate the descent in the region around each saddle point encountered by gradient descent, thereby increasing the convergence speed of over-the-air PCA. The idea is materialized by proposing a power-control scheme controlling the level of channel noise accordingly. The scheme is proved to achieve faster convergence than in the case without power control by experiments on real datasets. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Fellowship Award from the Research Grants Council of the Hong Kong Special Administrative Region, China[HKU RFS2122-7S04]
; Guangdong Basic and Applied Basic Research Foundation[2019B1515130003]
; Hong Kong Research Grants Council["17208319","17209917"]
; Innovation and Technology Fund[GHP/016/18GD]
; Shenzhen Science and Technology Program[JCYJ20200109141414409]
; National Natural Science Foundation of China["62001310","62171213"]
; National Key Research and Development Program of China[2018YFB1800800]
|
WOS研究方向 | Engineering
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:000866499900010
|
EI入藏号 | 20220311473818
|
EI主题词 | Gradient methods
; Learning algorithms
; Machine learning
; Power control
; Spurious signal noise
; Stochastic systems
|
EI分类号 | Machine Learning:723.4.2
; Control Systems:731.1
; Specific Variables Control:731.3
; Numerical Methods:921.6
; Mathematical Statistics:922.2
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85122795323
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9593170 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328169 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.The University Of Hong Kong,Department Of Electrical And Electronic Engineering,Hong Kong 2.Southern University Of Science And Technology,Department Of Electrical And Electronic Engineering,China 3.Shenzhen Institute Of Radio Testing and Tech.,Shenzhen,China 4.Baicells Technologies Co.,Ltd.,United States 5.Hong Kong University Of Science And Technology,Department Of Electronic And Computer Engineering,Hong Kong |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Zezhong,Wang,Rui,Li,Tengfei,et al. Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis[C]:IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC,2021:601-605.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论