中文版 | English
题名

Spatial Convergence of Federated Learning in Large-Scale Cellular Networks

作者
通讯作者Gong,Yi
DOI
发表日期
2021
会议名称
IEEE Workshop on Signal Processing Advances in Wireless Communications
ISSN
1948-3244
EISSN
1948-3252
ISBN
978-1-6654-2852-1
会议录名称
卷号
2021-September
页码
231-235
会议日期
27-30 Sept. 2021
会议地点
Lucca, Italy
摘要

The deployment of federated learning in a wireless network, called federated edge learning (FEEL), exploits low-latency access to distributed mobile data to efficiently train an AI model while preserving data privacy. In this work, we study the spatial (i.e., spatially averaged) learning performance of FEEL deployed in a large-scale cellular network with spatially random distributed devices. The derived spatial convergence rate is found to be constrained by a limited number of active devices regardless of device density and converges to the ground-true rate exponentially fast as the number grows. The population of active devices depends on network parameters such as processing gain and signal-to-interference threshold for decoding. Combing the derived results, intuitive guidelines are given for large-scale FEEL network provisioning and planning to reduce the model training latency without violating the learning accuracy.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20220311473744
EI主题词
Data privacy ; Learning systems ; Mobile telecommunication systems
EI分类号
Radio Systems and Equipment:716.3 ; Data Communication, Equipment and Techniques:722.3
Scopus记录号
2-s2.0-85122791086
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9593233
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328170
专题南方科技大学
工学院_电子与电气工程系
作者单位
1.The University Of Hong Kong,Dept. Of EEE,Hong Kong,Hong Kong
2.Southern University Of Science And Technology,Dept. Of EEE,Shenzhen,China
3.The Hong Kong University Of Science And Technology,Dept. Of ECE,Hong Kong,Hong Kong
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Lin,Zhenyi,Li,Xiaoyang,Lau,Vincent K.N.,et al. Spatial Convergence of Federated Learning in Large-Scale Cellular Networks[C],2021:231-235.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Zhenyi]的文章
[Li,Xiaoyang]的文章
[Lau,Vincent K.N.]的文章
百度学术
百度学术中相似的文章
[Lin,Zhenyi]的文章
[Li,Xiaoyang]的文章
[Lau,Vincent K.N.]的文章
必应学术
必应学术中相似的文章
[Lin,Zhenyi]的文章
[Li,Xiaoyang]的文章
[Lau,Vincent K.N.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。