题名 | Spatial Convergence of Federated Learning in Large-Scale Cellular Networks |
作者 | |
通讯作者 | Gong,Yi |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE Workshop on Signal Processing Advances in Wireless Communications
|
ISSN | 1948-3244
|
EISSN | 1948-3252
|
ISBN | 978-1-6654-2852-1
|
会议录名称 | |
卷号 | 2021-September
|
页码 | 231-235
|
会议日期 | 27-30 Sept. 2021
|
会议地点 | Lucca, Italy
|
摘要 | The deployment of federated learning in a wireless network, called federated edge learning (FEEL), exploits low-latency access to distributed mobile data to efficiently train an AI model while preserving data privacy. In this work, we study the spatial (i.e., spatially averaged) learning performance of FEEL deployed in a large-scale cellular network with spatially random distributed devices. The derived spatial convergence rate is found to be constrained by a limited number of active devices regardless of device density and converges to the ground-true rate exponentially fast as the number grows. The population of active devices depends on network parameters such as processing gain and signal-to-interference threshold for decoding. Combing the derived results, intuitive guidelines are given for large-scale FEEL network provisioning and planning to reduce the model training latency without violating the learning accuracy. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20220311473744
|
EI主题词 | Data privacy
; Learning systems
; Mobile telecommunication systems
|
EI分类号 | Radio Systems and Equipment:716.3
; Data Communication, Equipment and Techniques:722.3
|
Scopus记录号 | 2-s2.0-85122791086
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9593233 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328170 |
专题 | 南方科技大学 工学院_电子与电气工程系 |
作者单位 | 1.The University Of Hong Kong,Dept. Of EEE,Hong Kong,Hong Kong 2.Southern University Of Science And Technology,Dept. Of EEE,Shenzhen,China 3.The Hong Kong University Of Science And Technology,Dept. Of ECE,Hong Kong,Hong Kong |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Lin,Zhenyi,Li,Xiaoyang,Lau,Vincent K.N.,et al. Spatial Convergence of Federated Learning in Large-Scale Cellular Networks[C],2021:231-235.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论