中文版 | English
题名

A Knowledge-Based Fast Motion Planning Method Through Online Environmental Feature Learning

作者
通讯作者Chi,Wenzheng; Chen,Guodong; Sun,Lining
DOI
发表日期
2021
会议名称
IEEE International Conference on Robotics and Automation (ICRA)
ISSN
1050-4729
EISSN
2577-087X
ISBN
978-1-7281-9078-5
会议录名称
卷号
2021-May
页码
8309-8315
会议日期
MAY 30-JUN 05, 2021
会议地点
null,Xian,PEOPLES R CHINA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The sampling-based partial motion planning algorithm has come into widespread application in dynamic mobile robot navigation due to its low calculation costs and excellent performance in avoiding obstacles. However, when confronted with complicated scenarios, the motion planning algorithms are easily caught in traps. In order to solve this problem, this paper proposes a knowledge-based fast motion planning algorithm based on Risk-RRT, which guides motion planning by constructing a topological feature tree and generating a heuristic path from the tree. Firstly, an online topological feature learning method is proposed to simultaneously extract the features during the motion of the robot by means of the dual-channel scale filter and the secondary distance fusion. The learning process is completed until the feature points can represent arbitrary obstacle-free grid points of the whole map. Secondly, the topological feature tree is constructed with environmental feature points and the heuristic motion planning can be carried out on the feature tree. For one map, once the construction of the feature tree finishes, it can be reused as a prior knowledge in the following heuristic motion planning process, which will further improve the efficiency of searching feasible paths. The experimental results demonstrate that our proposed method can remarkably reduce the time taken to find a heuristic path and enhance the success rate of navigation in trapped environments.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[#61903267];
WOS研究方向
Automation & Control Systems ; Robotics
WOS类目
Automation & Control Systems ; Robotics
WOS记录号
WOS:000771405401112
EI入藏号
20220911737674
EI主题词
E-learning ; Forestry ; Heuristic methods ; Knowledge based systems ; Learning systems ; Mobile robots ; Robot programming ; Trees (mathematics)
EI分类号
Computer Programming:723.1 ; Expert Systems:723.4.1 ; Robotics:731.5 ; Agricultural Equipment and Methods; Vegetation and Pest Control:821 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85122668404
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561684
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328171
专题工学院_电子与电气工程系
作者单位
1.The Robotics and Microsystems Center,School of Mechanical and Electric Engineering,Soochow University,Suzhou,215021,China
2.The Department of Electronic and Electrical Engineering,The Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Yuan,Yuan,Liu,Jie,Wang,Jiankun,et al. A Knowledge-Based Fast Motion Planning Method Through Online Environmental Feature Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:8309-8315.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan,Yuan]的文章
[Liu,Jie]的文章
[Wang,Jiankun]的文章
百度学术
百度学术中相似的文章
[Yuan,Yuan]的文章
[Liu,Jie]的文章
[Wang,Jiankun]的文章
必应学术
必应学术中相似的文章
[Yuan,Yuan]的文章
[Liu,Jie]的文章
[Wang,Jiankun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。