中文版 | English
题名

APRNet: Alternative Prediction Refinement Network for Polyp Segmentation

作者
DOI
发表日期
2021
会议名称
43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC)
ISSN
1557-170X
EISSN
1558-4615
ISBN
978-1-7281-1180-3
会议录名称
页码
3114-3117
会议日期
NOV 01-05, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Colorectal cancer has become the second leading cause of cancer-related death, attracting considerable interest for automatic polyp segmentation in polyp screening system. Accurate segmentation of polyps from colonoscopy is a challenging task as the polyps diverse in color, size and texture while the boundary between polyp and background is sometimes ambiguous. We propose a novel alternative prediction refinement network (APRNet) to more accurately segment polyps. Based on the UNet architecture, our APRNet aims at exploiting all-level features by alternatively leveraging features from encoder and decoder branch. Specifically, a series of prediction residual refinement modules (PRR) learn the residual and progressively refine the segmentation at various resolution. The proposed APRNet is evaluated on two benchmark datasets and achieves new state-of-the-art performance with a dice of 91.33% and an accuracy of 97.31% on the Kvasir-SEG dataset, and a dice of 86.33% and an accuracy of 97.12% on the EndoScene dataset.Clinical relevance - This work proposes an automatic and accurate polyp segmentation algorithm that achieves new state- of-the-art performance, which can potentially act as an observer pointing out polyps in colonoscopy procedure.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key R&D program of China[2019YFB1312400]
WOS研究方向
Engineering
WOS类目
Engineering, Biomedical ; Engineering, Electrical & Electronic
WOS记录号
WOS:000760910503011
EI入藏号
20220811670507
Scopus记录号
2-s2.0-85122543696
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9630525
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328177
专题工学院_电子与电气工程系
作者单位
1.The Chinese University of Hong Kong,N.T. Department of Electronic Engineering,Hong Kong
2.Department of Radiation Oncology,Stanford University,Stanford,United States
3.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
4.Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong
5.Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen,China
推荐引用方式
GB/T 7714
Shen,Yutian,Jia,Xiao,Pan,Jin,et al. APRNet: Alternative Prediction Refinement Network for Polyp Segmentation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:3114-3117.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen,Yutian]的文章
[Jia,Xiao]的文章
[Pan,Jin]的文章
百度学术
百度学术中相似的文章
[Shen,Yutian]的文章
[Jia,Xiao]的文章
[Pan,Jin]的文章
必应学术
必应学术中相似的文章
[Shen,Yutian]的文章
[Jia,Xiao]的文章
[Pan,Jin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。