中文版 | English
题名

A Hybrid Learning Pipeline for Automated Diagnosis of First-Episode Schizophrenia Utilizing T1-weighted Images

作者
通讯作者Wang,Kai; Tang,Xiaoying
DOI
发表日期
2021
ISSN
1557-170X
ISBN
978-1-7281-1180-3
会议录名称
页码
2761-2764
会议日期
1-5 Nov. 2021
会议地点
Mexico
摘要
In this work, we proposed and validated a hybrid learning pipeline for automated diagnosis of first-episode schizophrenia (FES) utilizing T1-weighted images. Amygdalar and hippocampal shape abnormalities in FES have been observed in previous studies. In this work, we jointly made use of two types of features, together with advanced machine learning techniques, for an automated discrimination of FES and healthy control (96 versus 102). Specifically, we first employed a ResNet34 model to extract convolutional neural network (CNN) features. We then combined these CNN features with shape features of the bilateral hippocampi and the bilateral amygdalas, before being inputted to advanced classification algorithms such as the Gradient Boosting Decision Tree (GBDT) for classifying between FES and healthy control. Shape features were represented using log Jacobian determinants, through a well-established statistical shape analysis pipeline. When combining CNN with hippocampal shape, the best results came from utilizing GBDT as the classifier, with an overall accuracy of 75.15%, a sensitivity of 69.35%, a specificity of 80.19%, an F1 of 72.16%, and an AUC of 79.68%. When combing CNN and amygdalar shape, the best results came from utilizing Bagging as the classifier, with an overall accuracy of 74.39%, a sensitivity of 67.93%, a specificity of 80%, an F1 of 71.11%, and an AUC of 80.98%. Compared with using each single set of features, either CNN or shape, significant improvements have been observed, in terms of FES discrimination. To the best of our knowledge, this is the first work that has tried to combine CNN features and hippocampal/amygdalar shape features for automated FES identification.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[62071210];
EI入藏号
20220811669883
Scopus记录号
2-s2.0-85122530517
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9630313
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328182
专题工学院_电子与电气工程系
作者单位
1.Sun Yat-sen University,School of Electronics and Information Technology,Guangzhou,China
2.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
3.Department of Radiology,The First Affiliated Hospital of Shenzhen University,Shenzhen,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Wu,Jiewei,Lyu,Guiwen,Wang,Kai,et al. A Hybrid Learning Pipeline for Automated Diagnosis of First-Episode Schizophrenia Utilizing T1-weighted Images[C],2021:2761-2764.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Jiewei]的文章
[Lyu,Guiwen]的文章
[Wang,Kai]的文章
百度学术
百度学术中相似的文章
[Wu,Jiewei]的文章
[Lyu,Guiwen]的文章
[Wang,Kai]的文章
必应学术
必应学术中相似的文章
[Wu,Jiewei]的文章
[Lyu,Guiwen]的文章
[Wang,Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。