题名 | Osteoporosis Diagnosis Based on Ultrasound Radio Frequency Signal via Multi-channel Convolutional Neural Network |
作者 | |
通讯作者 | Liu,Jiang |
DOI | |
发表日期 | 2021
|
会议名称 | 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
|
ISSN | 1557-170X
|
EISSN | 1558-4615
|
ISBN | 978-1-7281-1180-3
|
会议录名称 | |
页码 | 832-835
|
会议日期 | 1-5 Nov. 2021
|
会议地点 | Mexico
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Osteoporosis is a metabolic osteopathy syndrome, and the incidence of osteoporosis increases significantly with age. Currently, bone quantitative ultrasound (QUS) has been considered as a potential method for screening and diagnosing osteoporosis. However, its diagnostic accuracy is quite low. By contrast, deep learning based methods have shown the great power for extracting the most discriminative features from complex data. To improve the osteoporosis diagnostic accuracy and take advantages of QUS, we devise a deep learning method based on ultrasound radio frequency (RF) signal. Specifically, we construct a multi-channel convolutional neural network (MCNN) combined with a sliding window scheme, which can enhance the number of data as well. By using speed of sound (SOS), the quantitative experimental results of our preliminary study indicate that our proposed osteoporosis diagnosis method outperforms the conventional ultrasound methods, which may assist the clinician for osteoporosis screening. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)[1102101201]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Biomedical
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000760910500194
|
EI入藏号 | 20220811671029
|
Scopus记录号 | 2-s2.0-85122504517
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9629546 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328186 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.National-Regional Key Technology Engineering Laboratory for Medical Ultrasound,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging,School of Biomedical Engineering,Health Science Center,Shenzhen University,Shenzhen,518060,China 2.Department of Orthopedic Surgery,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou,China 3.Bioland Laboratory,Guangzhou Regenerative Medicine and Health Guangdong Laboratory,Guangzhou,510500,China 4.Institute of Biomedical and Health Engineering,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China 5.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen,Zhiwei,Luo,Wenqiang,Zhang,Qi,et al. Osteoporosis Diagnosis Based on Ultrasound Radio Frequency Signal via Multi-channel Convolutional Neural Network[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:832-835.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Osteoporosis_Diagnos(415KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论