中文版 | English
题名

Accelerating Federated Edge Learning via Optimized Probabilistic Device Scheduling

作者
DOI
发表日期
2021
ISSN
1948-3244
ISBN
978-1-6654-2852-1
会议录名称
卷号
2021-September
页码
606-610
会议日期
27-30 Sept. 2021
会议地点
Lucca, Italy
摘要
The popular federated edge learning (FEEL) framework allows privacy-preserving collaborative model training via frequent learning-updates exchange between edge devices and server. Due to the constrained bandwidth, only a subset of devices can upload their updates at each communication round. This has led to an active research area in FEEL studying the optimal device scheduling policy for minimizing communication time. However, owing to the difficulty in quantifying the exact communication time, prior work in this area can only tackle the problem partially by considering either the communication rounds or per-round latency, while the total communication time is determined by both metrics. To close this gap, we make the first attempt in this paper to formulate and solve the communication time minimization problem. We first derive a tight bound to approximate the communication time through cross-disciplinary effort involving both learning theory for convergence analysis and communication theory for per-round latency analysis. Building on the analytical result, an optimized probabilistic scheduling policy is derived in closed-form by solving the approximate communication time minimization problem. It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves. The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20220311473957
EI主题词
Learning systems ; Privacy-preserving techniques ; Scheduling
EI分类号
Telecommunication; Radar, Radio and Television:716 ; Information Theory and Signal Processing:716.1 ; Telephone Systems and Related Technologies; Line Communications:718 ; Data Processing and Image Processing:723.2 ; Management:912.2
Scopus记录号
2-s2.0-85115714098
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9593157
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328196
专题南方科技大学
作者单位
1.Zhejiang University,College Of Information Science And Electronic Engineering,Hangzhou,China
2.Shenzhen Research Institute Of Big Data,Shenzhen,China
3.Southern University Of Science And Technology,Shenzhen,518055,China
4.China Academy Of Information And Communications Technology,Beijing,China
5.The Chinese University Of Hong Kong (Shenzhen),FNii And SSE,Shenzhen,China
推荐引用方式
GB/T 7714
Zhang,Maojun,Zhu,Guangxu,Wang,Shuai,et al. Accelerating Federated Edge Learning via Optimized Probabilistic Device Scheduling[C],2021:606-610.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Maojun]的文章
[Zhu,Guangxu]的文章
[Wang,Shuai]的文章
百度学术
百度学术中相似的文章
[Zhang,Maojun]的文章
[Zhu,Guangxu]的文章
[Wang,Shuai]的文章
必应学术
必应学术中相似的文章
[Zhang,Maojun]的文章
[Zhu,Guangxu]的文章
[Wang,Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。