题名 | On the Quantum K-Theory of the Quintic |
作者 | |
通讯作者 | Garoufalidis, Stavros |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1815-0659
|
卷号 | 18 |
摘要 | Quantum K-theory of a smooth projective variety at genus zero is a collection of integers that can be assembled into a generating series J(Q, q, t) that satisfies a system of linear differential equations with respect to t and q-difference equations with respect to Q. With some mild assumptions on the variety, it is known that the full theory can be reconstructed from its small J-function J(Q, q, 0) which, in the case of Fano manifolds, is a vector-valued q-hypergeometric function. On the other hand, for the quintic 3-fold we formulate an explicit conjecture for the small J-function and its small linear q-difference equation expressed linearly in terms of the Gopakumar-Vafa invariants. Unlike the case of quantum knot invariants, and the case of Fano manifolds, the coefficients of the small linear q-difference equations are not Laurent polynomials, but rather analytic functions in two variables determined linearly by the Gopakumar-Vafa invariants of the quintic. Our conjecture for the small J-function agrees with a proposal of Jockers-Mayr. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Mathematical
|
WOS记录号 | WOS:000773400000001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/328456 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Southern Univ Sci & Technol, Int Ctr Math, Dept Math, Shenzhen, Peoples R China 2.Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Garoufalidis, Stavros,Scheidegger, Emanuel. On the Quantum K-Theory of the Quintic[J]. Symmetry Integrability and Geometry-Methods and Applications,2022,18.
|
APA |
Garoufalidis, Stavros,&Scheidegger, Emanuel.(2022).On the Quantum K-Theory of the Quintic.Symmetry Integrability and Geometry-Methods and Applications,18.
|
MLA |
Garoufalidis, Stavros,et al."On the Quantum K-Theory of the Quintic".Symmetry Integrability and Geometry-Methods and Applications 18(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论