中文版 | English
题名

On the Quantum K-Theory of the Quintic

作者
通讯作者Garoufalidis, Stavros
发表日期
2022
DOI
发表期刊
ISSN
1815-0659
卷号18
摘要
Quantum K-theory of a smooth projective variety at genus zero is a collection of integers that can be assembled into a generating series J(Q, q, t) that satisfies a system of linear differential equations with respect to t and q-difference equations with respect to Q. With some mild assumptions on the variety, it is known that the full theory can be reconstructed from its small J-function J(Q, q, 0) which, in the case of Fano manifolds, is a vector-valued q-hypergeometric function. On the other hand, for the quintic 3-fold we formulate an explicit conjecture for the small J-function and its small linear q-difference equation expressed linearly in terms of the Gopakumar-Vafa invariants. Unlike the case of quantum knot invariants, and the case of Fano manifolds, the coefficients of the small linear q-difference equations are not Laurent polynomials, but rather analytic functions in two variables determined linearly by the Gopakumar-Vafa invariants of the quintic. Our conjecture for the small J-function agrees with a proposal of Jockers-Mayr.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Physics
WOS类目
Physics, Mathematical
WOS记录号
WOS:000773400000001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328456
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Southern Univ Sci & Technol, Int Ctr Math, Dept Math, Shenzhen, Peoples R China
2.Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
第一作者单位数学系
通讯作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Garoufalidis, Stavros,Scheidegger, Emanuel. On the Quantum K-Theory of the Quintic[J]. Symmetry Integrability and Geometry-Methods and Applications,2022,18.
APA
Garoufalidis, Stavros,&Scheidegger, Emanuel.(2022).On the Quantum K-Theory of the Quintic.Symmetry Integrability and Geometry-Methods and Applications,18.
MLA
Garoufalidis, Stavros,et al."On the Quantum K-Theory of the Quintic".Symmetry Integrability and Geometry-Methods and Applications 18(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Garoufalidis, Stavros]的文章
[Scheidegger, Emanuel]的文章
百度学术
百度学术中相似的文章
[Garoufalidis, Stavros]的文章
[Scheidegger, Emanuel]的文章
必应学术
必应学术中相似的文章
[Garoufalidis, Stavros]的文章
[Scheidegger, Emanuel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。