中文版 | English
题名

Counterintuitive Experimental Results in Evolutionary Large-Scale Multi-Objective Optimization

作者
通讯作者Ishibuchi,Hisao
发表日期
2022
DOI
发表期刊
ISSN
1941-0026
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
Recently, large-scale multiobjective optimization has received increasing attention from the evolutionary multiobjective optimization (EMO) community. This has led to the emergence of a specialized research area called evolutionary large-scale multiobjective optimization (ELMO). In general, it is believed that multiobjective optimization problems become more difficult as the number of decision variables increases. However, the following two counterintuitive observations are obtained from careful examinations of recent ELMO studies. One is that experimental results on some large-scale multiobjective test problems were improved by increasing the number of decision variables. The other is that better results were obtained for some other large-scale multiobjective test problems by conventional EMO algorithms (EMOAs) than state-of-the-art ELMO algorithms (ELMOAs). These observations suggest that ELMOAs have not always been evaluated on appropriate test problems. Moreover, their performance is not always better than the performance of conventional EMOAs. In this letter, we first re-examine the performance of ELMOAs and conventional EMOAs on a wide variety of scalable multiobjective test problems. Then, counterintuitive experimental results are analyzed using the anytime performance evaluation scheme and distributions of randomly generated initial solutions. Based on the analysis, suggestions on how to handle large-scale multiobjective test problems with counterintuitive results are proposed.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["61876075","62002152"] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925174447003] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000892933300032
出版者
EI入藏号
20221311864117
EI主题词
Benchmarking ; Decision making ; Evolutionary algorithms ; Pareto principle ; Testing
EI分类号
Management:912.2 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9739745
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328589
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Pang,Lie Meng,Ishibuchi,Hisao,Shang,Ke. Counterintuitive Experimental Results in Evolutionary Large-Scale Multi-Objective Optimization[J]. IEEE Transactions on Evolutionary Computation,2022,PP(99):1-1.
APA
Pang,Lie Meng,Ishibuchi,Hisao,&Shang,Ke.(2022).Counterintuitive Experimental Results in Evolutionary Large-Scale Multi-Objective Optimization.IEEE Transactions on Evolutionary Computation,PP(99),1-1.
MLA
Pang,Lie Meng,et al."Counterintuitive Experimental Results in Evolutionary Large-Scale Multi-Objective Optimization".IEEE Transactions on Evolutionary Computation PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pang,Lie Meng]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
百度学术
百度学术中相似的文章
[Pang,Lie Meng]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
必应学术
必应学术中相似的文章
[Pang,Lie Meng]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。