中文版 | English
题名

A New Off-grid Channel Estimation Method with Sparse Bayesian Learning for OTFS Systems

作者
DOI
发表日期
2021-12
会议名称
IEEE Globecom 2021
ISSN
2334-0983
EISSN
2576-6813
ISBN
9781728181042
会议录名称
页码
01-07
会议日期
December 7, 2021 - December 11, 2021
会议地点
Madrid
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

This paper proposes an off-grid channel estimation scheme for orthogonal time-frequency space (OTFS) systems adopting the sparse Bayesian learning (SBL) framework. To avoid channel spreading caused by the fractional delay and Doppler shifts and to fully exploit the channel sparsity in the delay-Doppler (DD) domain, we estimate the original DD domain channel response rather than the effective DD domain channel response as commonly adopted in the literature. The OTFS channel estimation problem is formulated as an off-grid sparse signal recovery problem based on a virtual sampling grid defined in the DD space, where the on-grid and off-grid components of the delay and Doppler shifts are separated for estimation. In particular, the on-grid components of the delay and Doppler shifts are jointly determined by the entry indices with significant values in the recovered sparse vector. Then, the corresponding off-grid components are modeled as hyper-parameters in the proposed SBL framework, which can be estimated via the expectation-maximization method. Simulation results verify that compared with the on-grid approach, our proposed off-grid OTFS channel estimation scheme enjoys a 1.5 dB lower normalized mean square error.

关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Information Systems ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000790747201110
EI入藏号
20221311872434
EI主题词
Doppler effect ; Frequency estimation ; Learning systems ; Maximum principle ; Mean square error ; Signal reconstruction
EI分类号
Information Theory and Signal Processing:716.1 ; Mathematical Statistics:922.2
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9685329
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/328842
专题工学院_电子与电气工程系
作者单位
1.Institute for Digtal Communications (IDC), Friedrich-Alexander University Erlangen-Nuremberg
2.Southern University of Science and Technology, Department of Electrical and Electronic Engineering, China
3.School of Electrical Engineering and Telecommunications, University of New South Wales
推荐引用方式
GB/T 7714
Zhiqiang Wei,Weijie Yuan,Shuangyang Li,et al. A New Off-grid Channel Estimation Method with Sparse Bayesian Learning for OTFS Systems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2021:01-07.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhiqiang Wei]的文章
[Weijie Yuan]的文章
[Shuangyang Li]的文章
百度学术
百度学术中相似的文章
[Zhiqiang Wei]的文章
[Weijie Yuan]的文章
[Shuangyang Li]的文章
必应学术
必应学术中相似的文章
[Zhiqiang Wei]的文章
[Weijie Yuan]的文章
[Shuangyang Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。