中文版 | English
题名

Adaptive Sliding Mode Disturbance Observer and Deep Reinforcement Learning Based Motion Control for Micropositioners

作者
通讯作者Yang, Zhixin
发表日期
2022-03-01
DOI
发表期刊
EISSN
2072-666X
卷号13期号:3
摘要
The motion control of high-precision electromechanitcal systems, such as micropositioners, is challenging in terms of the inherent high nonlinearity, the sensitivity to external interference, and the complexity of accurate identification of the model parameters. To cope with these problems, this work investigates a disturbance observer-based deep reinforcement learning control strategy to realize high robustness and precise tracking performance. Reinforcement learning has shown great potential as optimal control scheme, however, its application in micropositioning systems is still rare. Therefore, embedded with the integral differential compensator (ID), deep deterministic policy gradient (DDPG) is utilized in this work with the ability to not only decrease the state error but also improve the transient response speed. In addition, an adaptive sliding mode disturbance observer (ASMDO) is proposed to further eliminate the collective effect caused by the lumped disturbances. The micropositioner controlled by the proposed algorithm can track the target path precisely with less than 1 mu m error in simulations and actual experiments, which shows the sterling performance and the accuracy improvement of the controller.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Science and Technology Development Fund, Macau SAR["0018/2019/AKP","SKL-IOTSC(UM)-2021-2023"] ; Ministry of Science and Technology of China[2019YFB1600700] ; Guangdong Science and Technology Department["2018B030324002","2020B1515130001"] ; Zhuhai Science and Technology Innovation Bureau[ZH22017002200001PWC] ; Jiangsu Science and Technology Department[BZ2021061] ; University of Macau[MYRG2020-00253-FST]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Instruments & Instrumentation ; Physics
WOS类目
Chemistry, Analytical ; Nanoscience & Nanotechnology ; Instruments & Instrumentation ; Physics, Applied
WOS记录号
WOS:000774082500001
出版者
EI入藏号
20221411911891
EI主题词
Motion control ; Reinforcement learning ; Transient analysis
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Specific Variables Control:731.3
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329008
专题工学院_电子与电气工程系
作者单位
1.Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
2.Univ Macau, Dept Electromech Engn, Macau 999078, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Liang, Shiyun,Xi, Ruidong,Xiao, Xiao,et al. Adaptive Sliding Mode Disturbance Observer and Deep Reinforcement Learning Based Motion Control for Micropositioners[J]. MICROMACHINES,2022,13(3).
APA
Liang, Shiyun,Xi, Ruidong,Xiao, Xiao,&Yang, Zhixin.(2022).Adaptive Sliding Mode Disturbance Observer and Deep Reinforcement Learning Based Motion Control for Micropositioners.MICROMACHINES,13(3).
MLA
Liang, Shiyun,et al."Adaptive Sliding Mode Disturbance Observer and Deep Reinforcement Learning Based Motion Control for Micropositioners".MICROMACHINES 13.3(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liang, Shiyun]的文章
[Xi, Ruidong]的文章
[Xiao, Xiao]的文章
百度学术
百度学术中相似的文章
[Liang, Shiyun]的文章
[Xi, Ruidong]的文章
[Xiao, Xiao]的文章
必应学术
必应学术中相似的文章
[Liang, Shiyun]的文章
[Xi, Ruidong]的文章
[Xiao, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。