题名 | Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems |
作者 | |
通讯作者 | Liang,Jin Min; Fei,Shao Ming |
发表日期 | 2022-05-01
|
DOI | |
发表期刊 | |
ISSN | 1674-7348
|
EISSN | 1869-1927
|
卷号 | 65期号:5 |
摘要 | The gradient descent approach is the key ingredient in variational quantum algorithms and machine learning tasks, which is an optimization algorithm for finding a local minimum of an objective function. The quantum versions of gradient descent have been investigated and implemented in calculating molecular ground states and optimizing polynomial functions. Based on the quantum gradient descent algorithm and Choi-Jamiolkowski isomorphism, we present approaches to simulate efficiently the nonequilibrium steady states of Markovian open quantum many-body systems. Two strategies are developed to evaluate the expectation values of physical observables on the nonequilibrium steady states. Moreover, we adapt the quantum gradient descent algorithm to solve linear algebra problems including linear systems of equations and matrix-vector multiplications, by converting these algebraic problems into the simulations of closed quantum systems with well-defined Hamiltonians. Detailed examples are given to test numerically the effectiveness of the proposed algorithms for the dissipative quantum transverse Ising models and matrix-vector multiplications. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[12075159,12171011,12006015]
; Beijing Natral Science Foundation[Z190005]
; Shenzhen Institite for Quantum Science and Engineering, Southern University of Science and Technology[SIQSE202001]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000778209700002
|
出版者 | |
EI入藏号 | 20221311874343
|
EI主题词 | Ground state
; Hamiltonians
; Ising model
; Linear systems
; Machine learning
; Matrix algebra
; Optimization
; Quantum chemistry
; Quantum optics
|
EI分类号 | Light/Optics:741.1
; Physical Chemistry:801.4
; Algebra:921.1
; Optimization Techniques:921.5
; Numerical Methods:921.6
; Statistical Methods:922
; Quantum Theory; Quantum Mechanics:931.4
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85127299535
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329030 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.School of Mathematical Sciences,Capital Normal University,Beijing,100048,China 2.Beijing Academy of Quantum Information Sciences,Beijing,100193,China 3.State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University,Beijing,100084,China 4.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
通讯作者单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Liang,Jin Min,Wei,Shi Jie,Fei,Shao Ming. Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems[J]. Science China-Physics Mechanics & Astronomy,2022,65(5).
|
APA |
Liang,Jin Min,Wei,Shi Jie,&Fei,Shao Ming.(2022).Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems.Science China-Physics Mechanics & Astronomy,65(5).
|
MLA |
Liang,Jin Min,et al."Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems".Science China-Physics Mechanics & Astronomy 65.5(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论