中文版 | English
题名

Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems

作者
通讯作者Liang,Jin Min; Fei,Shao Ming
发表日期
2022-05-01
DOI
发表期刊
ISSN
1674-7348
EISSN
1869-1927
卷号65期号:5
摘要
The gradient descent approach is the key ingredient in variational quantum algorithms and machine learning tasks, which is an optimization algorithm for finding a local minimum of an objective function. The quantum versions of gradient descent have been investigated and implemented in calculating molecular ground states and optimizing polynomial functions. Based on the quantum gradient descent algorithm and Choi-Jamiolkowski isomorphism, we present approaches to simulate efficiently the nonequilibrium steady states of Markovian open quantum many-body systems. Two strategies are developed to evaluate the expectation values of physical observables on the nonequilibrium steady states. Moreover, we adapt the quantum gradient descent algorithm to solve linear algebra problems including linear systems of equations and matrix-vector multiplications, by converting these algebraic problems into the simulations of closed quantum systems with well-defined Hamiltonians. Detailed examples are given to test numerically the effectiveness of the proposed algorithms for the dissipative quantum transverse Ising models and matrix-vector multiplications.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[12075159,12171011,12006015] ; Beijing Natral Science Foundation[Z190005] ; Shenzhen Institite for Quantum Science and Engineering, Southern University of Science and Technology[SIQSE202001]
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:000778209700002
出版者
EI入藏号
20221311874343
EI主题词
Ground state ; Hamiltonians ; Ising model ; Linear systems ; Machine learning ; Matrix algebra ; Optimization ; Quantum chemistry ; Quantum optics
EI分类号
Light/Optics:741.1 ; Physical Chemistry:801.4 ; Algebra:921.1 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Statistical Methods:922 ; Quantum Theory; Quantum Mechanics:931.4 ; Systems Science:961
Scopus记录号
2-s2.0-85127299535
来源库
Scopus
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329030
专题量子科学与工程研究院
理学院_物理系
作者单位
1.School of Mathematical Sciences,Capital Normal University,Beijing,100048,China
2.Beijing Academy of Quantum Information Sciences,Beijing,100193,China
3.State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University,Beijing,100084,China
4.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Liang,Jin Min,Wei,Shi Jie,Fei,Shao Ming. Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems[J]. Science China-Physics Mechanics & Astronomy,2022,65(5).
APA
Liang,Jin Min,Wei,Shi Jie,&Fei,Shao Ming.(2022).Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems.Science China-Physics Mechanics & Astronomy,65(5).
MLA
Liang,Jin Min,et al."Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems".Science China-Physics Mechanics & Astronomy 65.5(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liang,Jin Min]的文章
[Wei,Shi Jie]的文章
[Fei,Shao Ming]的文章
百度学术
百度学术中相似的文章
[Liang,Jin Min]的文章
[Wei,Shi Jie]的文章
[Fei,Shao Ming]的文章
必应学术
必应学术中相似的文章
[Liang,Jin Min]的文章
[Wei,Shi Jie]的文章
[Fei,Shao Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。